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Hydrodynamics of a Water
Rocket*

Joseph M. Prusaf

Abstract. Applications of mass, momentum, and energy balances are central to the teaching of fluid
dynamics. In this study, a model to determine the trajectory of a water rocket is given
that is far simpler than the system of coupled partial differential equations that typically
results in modern hydrodynamic problems of interest. This makes the problem an excellent
choice for a student project—it can reasonably be completed with a day or two of effort.
In addition to the fundamental mathematics, this problem offers opportunities in scale
analysis, numerical methods for IVPs, balance principles in accelerated frames of reference,
and the collection and assessment of flight test data.
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I. Introduction. Many of us have enjoyed playing with a toy water rocket (Fig-
ure 1). The basic principle of operation is to expel a jet of water from the rocket
nozzle using compressed air. After a volume of water has been poured into the inte-
rior chamber of the rocket, it is mounted on a hand pump and the chamber contents
are compressed to several times atmospheric pressure. In a classic example of engi-
neering elegance, when the rocket is pointed upwards for launch, gravity naturally
stratifies the contents of the rocket so that the air cannot escape until it pushes all of
the water out of the interior chamber. In this manner the stored energy of the air is
efficiently transformed into kinetic energy of the exiting water jet. This jet provides
sufficient thrust to propel the rocket to astonishing heights. A few trial launches
quickly confirm that maximum heights are achieved with an intermediate volume of
water. Due to its low density, the thrust provided by air alone is negligible, and in a
launch without water, the rocket is barely able to lift off of the air pump seal. The
other extreme consists of completely filling the chamber with water. In this case, the
chamber cannot be pressurized since water is incompressible; consequently there is no
stored energy to turn into kinetic energy.

Detailed predictions of the rocket trajectory are possible using a model based
upon hydrodynamic principles. But what is remarkable is that because the design so
efficiently transforms stored energy into thrust, the model can be simple enough to
use as a project or take-home quiz in fluid dynamics at the advanced undergraduate
or beginning graduate level. When coupled with actual flight test data, where the
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Fig. | Water rocket schematic.

class goes outside and measures the height and time of the trajectories, enthusiasm
becomes palpable. This modeling exercise provides a great opportunity for students
to bring together their skills in physical reasoning, analysis, and numerical methods.
And it is fun!

2. Model. Application of Newton’s second law to the rocket as viewed from in-
ertial space Io(x%,) (see Figure 2) yields dP/dt = ma,, where dP/dt = F is the net
force acting on the rocket (P is momentum), m is its mass, and a, is its acceleration.
It is convenient to compute the thrust in a frame of reference moving with the rocket,
I(x) such that R(¢t) = I(0) — I,(0) is the position vector of I(0) with respect to
inertial space. In the noninertial space, Newton’s second law generalizes to dP/dt =
m(a + R), where R = d2R/dt? is the rectilinear acceleration of I(0) in I (x,) and
a is the rocket’s acceleration relative to I(x). Noting that a = 0 (by definition of
I(x)), this Lagrangian description of the momentum balance is reformulated into an
integral Eulerian description® using the Reynolds transport theorem [1]:

(2.1) Fs— W —mR = 9/ pudv+f pu(u-dA),
ot Jv A

where V' is the control volume consisting of the interior of the rocket and its rigid
shell, A is the surface of V, and dA = ndA is the vector surface area element of A
with the direction of the outward pointed unit normal n. Here u is velocity relative to

'Equation (2.1) represents an exact momentum balance that is equivalent to the more common
partial differential equation representation commonly known as the Navier-Stokes equations. The
weight and rectilinear acceleration terms on the left-hand side of (2.1) can be replaced with volume
integrals (of —pgdV and —pRdV/, respectively), and the divergence theorem [2] can be used to convert
the momentum flux term into a volume integral (of V- (puu)dV’). Assuming that V is independent of
time (but otherwise unspecified) allows 9/9t to be moved inside the first integral on the right-hand
side of (2.1). The surface force can be written as a volume integral of the divergence of the total
stress tensor ((V - S)dV). By combining all integrands and using the fundamental lemma of the
variational calculus [3], the Navier—Stokes equations in noninertial coordinates [4] are generated.
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Fig. 2 Inertial and noninertial frames of reference.

I(x), W = mg is the weight of the rocket, and Fg represents surface forces. The first
integral on the right-hand side of (2.1) represents the rate of increase of momentum of
the control volume with respect to the noninertial space, and in this case is zero (by
definition, the velocity of the control volume is u = 0). The second integral represents
the net momentum efflux through the control surface; it is the thrust term.

Assuming that (i) the launch is directed straight up (which can be reasonably
approximated in practice given sufficient care), (ii) the jet outflow has uniform prop-
erties across the exit area A., of the nozzle, and (iii) the only surface force acting on
the rocket is drag, (2.1) reduces to

(22) Z = (pwwerAex)/m - pathcOdwz/2 -9

where z is the rocket altitude (in Io(Xo)), pw is the density of water, and we, is
the jet exit velocity relative to the control surface (e.g., downward velocity in I(x)),
whereas w is the rocket velocity (e.g., vertical velocity in I(x,)). The drag coefficient
is denoted by Cy and the density of the surrounding atmosphere by paim, and A, is
the cross-sectional area of the rocket in the plane perpendicular to the vertical. First
and second integrals of (2.2) produce the vertical velocity and altitude of the rocket
in Io(xo), respectively:

t t
(2.3a,b) w :/ Zdr and z =z, +/ wdT.
0 0

The z, term compensates for launches from other than ground level.

In order to integrate (2.2), the jet exit velocity we, and rocket mass must first
be determined. For any control volume V' an integral mass balance can be written in
the form

(2.4) 0= 9 pdV +% p(u-dA).
ot Jy A

Here the first integral on the right-hand side represents the rate of increase of mass
in V, while the second integral gives the net mass efflux across A. This result is
also exact and can be shown to be fully equivalent to the continuity equation using
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the divergence theorem and fundamental lemma of the variational calculus. For the
rocket problem, with the control volume consisting of the interior of the rocket and
its rigid shell, (2.4) reduces to

(2.5) Va(t) = Vo (0) + Aus / o,
0

where V,,(t) = Viot — Vi (t) is the volume of compressed air in the chamber, V;,; is the
total chamber volume, and V,,(¢) is the volume of water remaining in the chamber.
The rocket mass is given by

(2.6) m(t) = ms + ma + puwViet — Va(t)]-

Here my is the mass of the rocket shell and m, is the mass of compressed air trapped
in the rocket chamber. This latter mass is constant during the thrust period and
equal to [pa(0)V4(0)]/[RaTw(0)], where p,(0), T,(0), and R, are the initial pressure
and temperature of the compressed air and air gas constant, respectively.

The jet exhaust velocity is determined by the transformation of stored energy
of the pressurized air into kinetic energy of the water jet. For inviscid, incompress-
ible, and steady flow along a streamline, an exact integral of the energy equation is
Bernoulli’s equation [4]. The incompressibility condition is met by taking a stream-
line from the compressed air/water interface in the rocket chamber, at pressure p,(¢),
down through the volume of water to the exit plane of the nozzle, at atmospheric
pressure paum. The inviscid condition is met by an efficient? nozzle design. The final
condition of steady flow is not rigorously met, but comparison of the time scales for
unsteadiness (7, ~ 0.1 s) versus advection of the water (74qy ~ [/wey ~ 0.001 s)
shows that the process is quasi-steady. Here [ ~ 0.01 m is a characteristic length for
the rocket chamber, and we; ~ 10 ms~! from the model results. The unsteady time
scale corresponds to the period of thrust and is determined by direct observation (or
model results). Hence all the conditions for Bernoulli’s equation are reasonably met.
Assuming that the kinetic energy at the compressed air/water interface is negligible,
the following expression for jet velocity results:

(27) Wey = \/2[pa(t) _patm]/pw~

Closure of the problem is achieved by determining the compressed air pressure.
This requires knowledge about the nature of the expansion process. The expansion is
very fast with respect to time scales for heat transfer (7., < Tht ~ 2 Ja~ 10 s, where
a ~ 107° m2s~! is the thermal diffusivity of the air), so an adiabatic approximation
is a good one to choose. Adiabatic expansion of an ideal gas with constant specific
heats gives [4]

(2.8) Pa(t) = pa(0)[Va(0)/Va(t)]",

where v = ¢, /¢, is the ratio of specific heats. Equations (2.5), (2.7), and (2.8) may
be combined to give the nonlinear integral equation [5]

Q9 Vi) = Val0) + Aee [ V20 OVOV] = put) 0 .

2Theoretically, a 100% efficient nozzle design is one for which there is no entropy production.
In the present example this means the expanding flow satisfies Bernoulli’s equation exactly. From a
practical viewpoint, efficient nozzle designs require smooth duct flow surfaces with no rapid changes
in cross-sectional area. See the discussion of (2.7’) in section 5.
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3. Solution. Equations (2.2), (2.3), and (2.5)—(2.8) with specified initial condi-
tions V,,(0) and p,(0) and parameters Vior, ms, Aex, ¥, Ra, Patm, Pws La(0), g, and
z, complete the model that describes the rocket trajectory. Since the problem is
strongly nonlinear, a numerical method is used to solve the model equations. The
initial conditions take on the form

(3.1a-h)
to = 07 pao = pa(0)7 Vao = V;iot - Vw(o)a wezo = \/2(pa0 - patm)/pwa
m® =mg + [paovao]/[RaTa(O)] + pw Vi (0), 20 = [Pw(wexo)erx]/mO -9

w? =0, and 2° = z,.

Given all relevant variables at time level n, where t" = (n — 1)At is the corre-
sponding time and At the timestep, the following predictor-corrector scheme is used
to compute the solution during the thrust period at time level n + 1:

(3.2a—€)

‘7@ = Van + Aexweant7 5@ = paO[VaO/Va]’Y

| Wave = W+ EPAL/2,

ﬁave = (pan +§a)/27 and wez = \/2(5111)6 7patm)/pw7
(3.2f-1)
Vo' = V" + Agpllen AL, pa" T = pa OV Va"

wexn—&-l — \/2(pan+1 _ patm)/pun mntl = ms +mg + pw(Vtot - Van+1),
. 2 m

Zn+1 = [pw(wew7l+1) Aew]/mn+1 - Pathchn+1(wave)2 -9

wn+1 ="+ (Zn 4 2n+1)At/27 and Zn+1 ="+ (wn + wn+1)At/2

Equations (3.2a—e) consist of first-order predictions for the compressed air volume
and pressure, which are then used to compute midpoint values for pressure and jet
velocity and a first-order midpoint value for rocket velocity. The midpoint jet and
rocket velocities are then used in (3.2f-1) to determine corrected (final) values for the
compressed air volume and pressure, jet velocity, and inertial acceleration at time level
n—+ 1, which then lead to updates in the rocket velocity and altitude. The integration
for the thrust period ends when either (i) V,, = Vio; (all of the water gets blown out) or
(ii) po = Patm (the compressed air has expanded to the minimum possible pressure).

Once the thrust period is over, the rocket is in a ballistic flight regime, and
the maximum altitude and the time to reach this altitude may be computed using
Bernoulli’s equation if there is negligible drag force:

(333) Zmaz = Zend T wendz/Qg and tmaz = tend + wend/ga

where tepd, Zend, and wepq are the time, altitude, and rocket velocity at the end of
the thrust period. For the case of constant drag coefficient Cy, exact integrals are

Zmaz = Zend — 37 In(cos[(tmaz — tena)V/Bg] ) and
tmaa: — tend + tan_l(wend \V/ ﬂ/g)/ﬁv

where 8 = patmAcCa/(2Mend), Patm = Patm/(RaTatm), and me,q is the total rocket
mass at the end of the thrust period. For more general cases of variable drag coef-
ficient (e.g., Reynolds number dependency) the trajectory may be determined using
numerical integration as given in (3.2).

(3.3)
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Table | Flight test data® and model predictions for rocket launches. Units are ml, psig (kPa
absolute), s, degrees, and m for volume, pressure, time, angle, and height variables, Te-
spectively.

Launch Vaw (0) pa(o) tjnaz almaz Zjnaz Z}naz tvifn,az
1 23.2 39 (370) (37)§ 23.59 11.2 10.41 (3.02)
2 13.2 | 40 (375) | (2.6) | 16.0 78 | 6.05 | (2.34)
3 32.2 44 (405) 1.6 28.0 13.4 13.54 1.71
4 32.2 44 (405) 1.7 30.0 14.4 13.54 1.71
5 7.2 | 40 (375) | = (7 ft) 21 | 252 | 073
6 32.2 60 (515) 1.8 40 20.4 20.26 2.07

Tfield test data, fmodel prediction.

$The timings shown in columns 4 and 8 are from the moment of launch
to maximum height, except for the first two launches, which are in
parentheses—these times are to impact with the ground.

9TColumn 5 gives the angle of maximum height, with the exception of
launch 5, which gives actual maximum height (2.1 m). The baseline for
the triangulation was 75 ft (23 m), and the protractor was on a tripod 4 ft
(1.2 m) above ground level.

4. Results. The model solution was compared against flight test data collected by
the class. The rocket tested had a dry mass and total volume of ms; = 19.1 g and V;oy =
73.6 ml, respectively. These measurements were made using an electronic balance
(accuracy of +0.1 g) and graduated cylinder (accuracy of +0.2 ml). The rocket’s
nozzle exit radius was R, = 2.5 mm, giving A., = 1.96 x 107> m~2. Atmospheric
and air properties were pq¢,, = 101 kPa, R, = 287 J - kgK, v = 1.40, and Ty, = 80° F
(300 K). All launches were close to ground level, so 2z, = 0 m, g = 9.81 ms~2, and
pw = 1000 kg - m~3. Sufficient time was given between launches for the compressed air
and water inside the rocket to come into thermal equilibrium with the surroundings, so
T, (0) = Tytm. Four distinct initial volumes of water V,,(0) were used in the field tests;
these volumes were marked on the rocket shell. Measurements with the graduated
cylinder demonstrated a repeatability of £0.5 ml using these marks. The initial
value of p,(0) was measured with a mechanical pressure gauge in psig, which was
converted into absolute pressure in kPa for the model computations. The maximum
height reached in a launch was measured using a large protractor (e.g., a unit power
theodolite) and timings were made using a digital stopwatch. Table 1 shows the data
collected during one class period of sufficient quality to make quantitative comparisons
with the model possible.

3The accuracy of the flight test data is difficult to assess using traditional analysis methods like
propagation of error because the uncertainties in crucial measurements such as the angle of maximum
height were not estimated due to time constraints to keep the measurements to one class period.
However, from Figure 3 it is clear that the flight data fit the model predictions for maximum heights
to about 1 m, on average (in particular, note that launches 3 and 4 had the same initial state). Unless
we were very lucky, this should be a reasonable estimate of the mean error of measurement. We tried
to be very meticulous in launching and measuring the rocket. It is easy to get data that vary wildly
for launches that are not done with enough care. Some suggestions are to (i) make sure the water
temperature is at the ambient, (ii) check that the seal between the pressurized rocket chamber and
the air pump does not leak, (iii) check that either the pressurized rocket chamber and/or the air
pump themselves do not leak, (iv) practice measuring water volumes used to charge the rocket until
repeatable to =1 ml or better, (v) attach a pressure gauge to the air pump (most easily done at the
end where the rocket is seated) to allow accurate determination of the chamber pressure, and (vi)
make altitude, distance, and time measurements in pairs and throw out all cases where the two sets
of measurements are wildly different.
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Fig. 3 Comparison of model predictions and field tests showing mazimum altitudes (m) attained
by the rocket as a function of initial volume of water Vi (0). Field tests (open circles) and
corresponding model predictions (dots) show initial gauge pressures pq(0) (see Table 1 for
equivalent absolute pressures in SI units). The solid curve is the model prediction for the
single initial pressure of 44 psig (405 kPa absolute).

In the model computations, the mass of compressed air was ignored. This was a
good approximation because m, ~ 0.1 g is much smaller than the masses of the water
and rocket shell. The drag force term was also dropped as the ratio of drag force to
thrust was ~ 1072, Note that this approximation decouples the interior dynamics of
the rocket from its motion through the atmosphere. Resolving the thrust period into
5 to 10 timesteps typically resulted in numerical convergence (in the sense of At — 0)
of the solution to three to four significant figures. For launches 3-5, the thrust period
lasted 0.095 s and a timestep of At = 0.01 s yielded a solution converged to four
significant figures. The end of thrust conditions (i) V, = Vit or (ii) pa = Patm re-
quires special treatment since these conditions are not met exactly on a computational
timestep. For the first condition, the algorithm will predict a negative water volume.
A linear interpolation based upon this negative V,, and the last positive value V) was
used to determine the end of thrust time, t.,q, and all relevant variables were extrap-
olated to this time. The compressed air pressure, P, end, Will generally be greater than
Patm and so there will be a sudden adjustment in p, as the last bit of water is blown
out of the chamber. In the model, no thrust is computed due to this adjustment. For
the second condition, the algorithm will predict a gauge pressure less than zero. A
linear interpolation based upon this negative (P — patm) and the last positive value
(P2 — patm) was used to determine te,q, and all relevant variables were extrapolated
to that time. In this end state, there is a residual volume of water left in the chamber.

5. Discussion. Figure 3 shows the maximum heights the rocket reaches as pre-
dicted by the model for an initial pressure of p,(0) = 44 psig (405 kPa absolute)
for the range of initial water volumes 0 < V,,(0) < Vio:. It shows that for a given
Pa(0), there exists an optimum water volume V,, o (0) for which the rocket will rise
higher than for any other value of V,,(0). At p,(0) = 44 psig this optimum volume
is Vi,opt(0) = 30.7 ml, and the corresponding maximum height is 2,4, = 13.59 m.
Figure 3 also shows the flight test data listed in Table 1 and the corresponding model
predictions. Overall agreement is remarkably good.
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For any given p,(0), there exists a critical water volume Vi, .(0) such that
both ends of thrust conditions (i) and (ii) are met simultaneously. In this end state,
the compressed air pressure reaches the ambient pressure precisely as the last bit
of water is blown out of the chamber. For p,(0) = 44 psig, this critical volume is
Vw,erit(0) = 46.2 ml. The maximum height attained in this case is only 7.2 m, well
below the value for Vi, o, (0).

This problem presents numerous opportunities for refinements on the physical
model. One could easily keep in terms like the compressed air mass and drag force
and directly assess their effects. For students unsure of the suitability (or meaning)
of an adiabatic expansion, an alternate isothermal expansion can be computed by
setting v = 1 in (2.8). For the initial conditions of launches 3—4, an isothermal
expansion results in a maximum altitude of 17.3 m, well above the measured values.
The isothermal expansion results in z,,4, that are too high because it requires that
additional stored energy be transferred into the compressed air by heat transfer. One
parameter that is difficult to measure accurately is the jet nozzle radius simply because
it is so small. A probable error of 0.2 mm in the value of R,, means an error of 20%
in Ae;. Fortunately, the model is fairly insensitive to the exact value of A.,. For
the initial conditions of launches 3-4, values of R., = 2.0 and 3.0 mm produce 2,4z
that are lower and higher than the value listed in Table 1 by only 0.41 and 0.25 m,
respectively. A related issue is the effect of a vena contracta [1], which can easily be
modeled by a reduction in the value of R.,. Finally, improvements can be made upon
the use of Bernoulli’s equation. One possibility is to introduce a nozzle efficiency,
n < 1, such that (2.7) is replaced by

(27/) Wex = \/277[pa(t) _patm]/pw-

If Vi (0) < Vi erit(0), then during the last moments of the thrust period the velocity
of the air/water interface approaches we, and unsteadiness becomes important. This
means that Bernoulli’s equation is no longer valid (and hence (2.7), (2.7") are suspect)
as t — tenq from below. Nevertheless, the model solution matches the data well,
suggesting that the overall impact of this unsteadiness is minimal.

For students and instructors interested in additional mathematical aspects of
the model, one could solve the nonlinear integral equation (2.9) directly rather than
the corresponding (2.5), (2.7), and (2.8). By considering unsteady two-dimensional
flows, one could consider axisymmetric viscous flows inside and outside (a boundary
layer computation) the rigid shell to more accurately determine viscous effects. At
this level, the problem becomes a good test for an advanced graduate-level course in
computational methods.
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