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The air-pumped, water-propelled rocket is a common child’s toy, yet forms a reasonably
complicated system when carefully analyzed. A lab based on this system was included as the final
laboratory project in the honors version of General Physics I at the USAF Academy. The numerical
solution for the height of the rocket is presented, as well as several analytic approximations. Five out
of six lab groups predicted the maximum height of the rocket within experimental error. ©2000

American Association of Physics Teachers.
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I. INTRODUCTION

The study of rocket motion has been used for decade
excite students with the study of physics.~See Refs. 1–4, for
example.! Combined with the use of electronic compute
students can begin to solve many interesting, ‘‘real worl
problems. In the honors versions of a calculus-based in
ductory mechanics course, I assigned my students the p
lem of analyzing the motion of an air-pumped, wate
propelled rocket. The final goal was to determine t
optimum amount of water to put into the rocket in order
achieve the maximum possible height. While we used sm
toy rockets, most of this analysis would also apply to t
popular demonstration using 2-l soda bottles pressurized b
a bicycle pump.

II. MECHANICS OF ROCKET MOTION

There are numerous references to the basic physic
rockets. In addition to those listed above, the reader m
consult almost any university physics text. The basic pr
lem is to find the thrust, drag, and mass of the rocket a
function of time in order to find the acceleration, velocit
and position. The following sections develop the different
equations to be solved numerically, as well as some us
analytic approximations.

A. Thrust

The thrust,T, of a rocket due to the ejection of mass fro
the nozzle is

T5Uve

dM

dt U, ~1!

whereve is the exhaust velocity of the ejected mass in
rocket’s frame of reference anddM/dt is the rate at which
mass is ejected from the rocket. In our case, the mass is
water that is pushed out as a result of the elevated air p
sure inside the rocket. Becauseve and dM/dt both depend
on the pressure inside the rocket, finding the time profile
the thrust is nontrivial. However, it is within the capability o
better introductory physics students.

Bernoulli’s equation~conservation of energy! is applied at
two points along a streamline. This can be written gener
as

P11 1
2rv1

21rgy15P21 1
2rv2

21rgy2 .

Figure 1 shows a schematic of the rocket. Take point 1 as
surface of the water inside the rocket and point 2 just outs
the nozzle. Neglecting the pressure difference due to
223 Am. J. Phys.68 ~3!, March 2000
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height of the water and neglecting the velocity of the wate
the surface compared to the velocity at the nozzle, we ob

P5Pa1 1
2rwve

2, ~2!

whereP is the pressure inside the rocket,Pa is atmospheric
pressure, andrw is the density of water. In addition to th
assumptions listed above, we must also take as valid all
assumptions which apply to Bernoulli’s equation~principally
incompressible, nonviscous, irrotational flow!.

Equation~2! can be solved forve and determines the ex
haust velocity as a function of internal pressure,P. The other
term needed to find the thrust from Eq.~1! is the mass flow
rate. Since the mass flow rate is just the volume flow r
times the density of the water,

dM

dt
5rw

dV

dt
5rwAeve , ~3!

whereAe is the cross-sectional area of the exhaust noz
Combining Eqs.~1!–~3! gives

T52~P2Pa!Ae . ~4!

Finding the thrust therefore depends on finding the press
within the rocket as a function of time. As the rocket expe
the water, the pressure and exhaust velocity drop, and
the rate of pressure decrease drops. The solution begins
two assumptions:~1! the air in the rocket behaves as an ide
gas and~2! the air expands isothermally.~Justification for the
isothermal assumption is given in Appendix A.! These as-
sumptions allow us to write

PV5P0V0 , ~5!

whereP andV are the pressure and volume of air inside t
rocket at any time before all the water is ejected andP0 and
V0 are the initial pressure and volume of air. Solving forP
and taking the derivative with respect to time

dP

dt
52

P0V0

V2

dV

dt
. ~6!

Now substituting from Eqs.~2!, ~3!, and~5! to eliminateV,
we get

dP

dt
52

P2

P0V0
AeA2~P2Pa!

rw
. ~7!

Equation~7! can be solved to obtainP(t). The analytic so-
lution is presented below for comparison but, because of
complexity of the result, I had the students utilize a nume
cal solution forP(t). To solve~7! analytically, separate vari
223© 2000 American Association of Physics Teachers
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ables and integrate fromt50 to t and fromP5P0 to Pf ,
which yields

t5Arw

2

P0V0

PaAe
S APf2Pa

Pf
2

AP02Pa

P0

1
1

APa
FarctanSAPf2Pa

Pa
D 2arctanSAP02Pa

Pa
D G D .

~8!

Figure 2 shows a comparison between the numerical so
tion of ~7! and Eq.~8!. Aside from the simplicity of numeri-
cally integrating~7! compared to inverting~8! for P(t), solv-
ing it numerically also allows straightforward incorporatio
of the next force, aerodynamic drag.

Fig. 1. Sketch of the water rocket under consideration.

Fig. 2. Comparison of analytical result of Eq.~8! with the numerical solu-
tion from Eq. ~16!. Numerical solution shows only every tenth point from
the numerical integration. Time of burnout is indicated bytbo .
224 Am. J. Phys., Vol. 68, No. 3, March 2000
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B. Drag

Aerodynamic drag is an important velocity-depende
force, but not always discussed in introductory physics. T
ditionally the drag force,Fd , is expressed as

Fd5 1
2CdArv2, ~9!

whereCd is the drag coefficient,A is an area correspondin
to the geometry of interest, andr is the density of air. At
moderate speeds~see Appendix B!, the drag coefficient is
independent of the size of the object and speed of
airflow.5 In the case of these rockets, there were two com
nents contributing to the drag: the rocket body and the fi
Figure 1 shows that the body is roughly ellipsoidal in sha
The dashed line in Fig. 1 indicates the location of a bend
the fins to help stabilize the rocket by inducing rotation. F
these rockets, drag is a fairly small effect, so the prec
value ofCd is not critical. Students could go to a number
sources to obtain the necessary data to estimateCd .6–8 My
estimates areCd,body50.05 andCd,fins50.1. The appropriate
area for the body is the circular cross-section normal to
airflow. The area for the fins is the lateral area shown in F
1, the surface area~of one side of each fin! which is roughly
parallel to the airflow. Combining these into a single valu
and using the local average air density ofr51.05 kg/m3 ~for
an elevation of 7000 ft!, yields a total drag force

Fd5Dv2, ~10!

whereD5231024 N/~m/s!2. This equation is incorporated
into the numerical solution for the motion of the rocket.

Now consider the following analytic approximation for th
reduction in the maximum possible height due to drag. Fi
drag can be neglected during the thrust phase for the foll
ing reasons: The thrust phase lasts only about 0.1–0.2
about 1.5 m out of a total altitude gain of 20 m. Furthermo
drag is not the dominant force during the thrust phase~or
during the coast phase, for that matter!. For a speed of 20
m/s, the drag force is only about 0.08 N, compared to
thrust of 10–20 N. However, the force of gravity on th
empty rocket is about 0.4 N, so drag is a minor~but signifi-
cant! effect during the coast phase.

Therefore, it is possible to treat the drag force as a per
bation on the kinematic solution.9 From kinematics~i.e., ig-
noring drag!, the velocity profile for an initial speedv0 is

v~y!5Av0
222gy. ~11!

Now calculate the work done by the force of drag using t
profile,

Wnc5E F"ds52DE
0

y

v~y!2dy52D~v0
2y2gy2!.

~12!

Applying this value of work in conservation of energ
(DK1DU5Wnc) and solving for the maximum height o
the rocket (mr is the mass of the empty rocket!,

ymax5
v0

2

2g
1

mr

2D
~12A11D2v0

4/mr
2g2!. ~13!

The fraction under the radical is just the square of the ratio
the maximum drag force to the force of gravity. For o
rockets, this value was about 0.05. Therefore it can be
panded to first order. Finally, again use kinematics to repl
v0 with t, the total time of flight of the rocket from launch t
224G. A. Finney
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impact, we obtain for the height of the rocket~to first order
in the drag coefficient!

h5
1

8
gt22

D

64mr
g2t4. ~14!

This expression can be used to estimate the height of
rocket given the time of flight—a much simpler measu
ment to make than using a sextant and trigonometry. T
result will be compared to the result of numerical integrat
in a later section.

C. Rocket mass

Rocket ‘‘burnout’’ will be determined by one of two pos
sible conditions: either the air expands until it forces all
the water out of the rocket or it expands until it reach
atmospheric pressure. While the latter could conceivably
cur if the initial volume of the air was much smaller than t
total volume inside the rocket, it is of little practical intere
and is not considered further. In the former case, once a
the water is exhausted, the remainder of the air will rush o
but the air will contribute little to the thrust and is neglecte

The mass of the rocket constantly decreases until all of
water is ejected from the rocket. For a given pressure ins
the rocket, the volume of the air inside the rocket was fou
using Eq. ~5!. The volume of the water,Vw , is thus the
difference between the volume of the air and the total v
ume of the rocket,VT . Multiplying by the density of water
(rw5103 kg/m3) and adding the mass of the empty rock
(mr539 g) yields the final result for the mass of the rock
as a function of the internal pressure~before ‘‘burnout’’!:

M ~P!5 H rw~VT2P0V0 /P!1mr before ‘‘burnout’’
mr after ‘‘burnout’’.

~15!

This expression is used in the numerical solution.

III. NUMERICAL SOLUTION

Since I was working with second semester freshmen, t
had very little experience with numerical methods. The
fore, the students used the simple Euler method~first order,
forward time difference! to implement the numerical solu
tion. The students usedMATHCAD® to perform the computa
tions. My solution was implemented using the following s
of equations, combining the results of Eqs.~4!, ~7!, ~10!, and
~15! ~the students used similar sets of equations!:

Pn115Pn2
Pn

2

P0V0
AeA2~Pn2Pa!

rw
Dt,

vn115vn1a~Pn ,vn!Dt, ~16!

yn115yn1vnDt,

where

a~P,v !5
2Ae~P2Pa!2Dvuvu

M ~P!
2g. ~17!

Once the students had made various measurements o
rockets to determine the necessary physical parameters,
two initial conditions were left to be determined: pressu
and water volume. Clearly, the higher the initial pressure,
greater the velocity of the ejected water, and hence
greater the velocity of the rocket. Therefore, I set an up
225 Am. J. Phys., Vol. 68, No. 3, March 2000
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limit of 4 atm (Pa) for the pressure inside the rocket~based
on destructive testing of one sample that cracked at slig
less than 5 atm!. While it may have been possible to modif
the pump in order to directly measure the pressure, I wan
to keep the project as simple as possible. Therefore, the p
sure was calculated based on the volume of the rocket,
volume of water in the rocket, and the number of ‘‘pumps
Figure 3 shows a schematic drawing of the pump used.
amining the pump, it consists of a piston moving within
cylinder. However, the pump is constructed so that there
small amount of empty space at the end of the cylinder.
the piston is compressed, the air in the main cylinder w
volumeVc ~31 mL! is forced into the small space at the en
of the cylinder with volumeVe ~8 mL!. Thus, as the rocket is
pressurized, the air from the main cylinder and small spac
the end~with volumeVc1Ve! is compressed into the sma
space and the empty space in the rocket~with volume Ve

1V0!. The pressure afterj 11 pumps,Pj 11 , can be written:

Pj 115
PjV01Pa~Vc1Ve!

V01Ve
. ~18!

@Note that asn→`, Pn115Pn5Pa(Vc1Ve)/Ve>5Pa .
Therefore it would appear that the rockets may have b
originally designed to withstand the maximum possible pr
sure the pump could generate, but the rockets had degr
with age.# Thus the students could determine the number
pumps needed to achieve a pressure of 4Pa .

Finally, the students needed only to determine the o
mum water volume. They accomplished this task by repe
ing the calculations for a range ofV0’s with the MATHCAD

worksheet that they had developed. Figure 4 shows a plo
maximum height versus volume of water forP054Pa , both
including and excluding the effects of drag. Interestingly, t
height is not especially sensitive to the volume of water n
the maximum height~even considering that the derivative
zero at a maximum!. With the modeling complete, the stu
dents were ready to launch their rockets.

IV. LAUNCHING

The students launched their rockets several times durin
single class period to compare the results of their mode
the actual performance of their rockets. The height was e
mated in two ways. First, the students attempted to use
angulation, but the available equipment~protractors and
plumb bobs! yielded less than satisfactory results because
uncertainty in the height was too large. The second techni
was to measure the total time of flight for the rockets and
Eq. ~14! to estimate the maximum height. Figure 5 sho

Fig. 3. Schematic diagram of the rocket pump, showing the main cylin
with volumeVc and empty space at the end of the pump with volumeVe .
225G. A. Finney
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maximum height versus time of flight for the analytic a
proximation of Eq.~14! and numerical integration of Eq
~16!. The time of flight from numerical integration of~16!
depended upon the initial volume of water—the point t
curve doubles back indicates the time of flight correspond
to the optimum water volume. The error bars are based o
on the uncertainty in measuring the time of flight~estimated
to be 0.2 s!, propagated through Eq.~14! using standard
techniques.10 Of the six groups, five predicted the height~as
determined by time of flight! within experimental uncer-
tainty. The only group which was not within uncertain
elected to neglect drag in their model. The success of
students as a whole is particularly significant considering
model had no free parameters!

Fig. 4. Predicted height as a function of initial water volume in the rock
The solid line shows the result of numerical integration of Eq.~16! while the
dashed line shows the result neglecting drag.

Fig. 5. Maximum altitude vs time of flight. The solid line indicates the res
of numerical integration of~16! and the dashed line indicates the analytic
approximation given by Eq.~14!. Error bars indicate uncertainty in est
mated height based on uncertainty in measuring time of flight.
226 Am. J. Phys., Vol. 68, No. 3, March 2000
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V. CONCLUSIONS

Most students reacted favorably to the project. The s
dents worked in groups of 3–4 to outline their procedur
develop the model, and predict the maximum height. S
dents did comment on the amount of time required, 10–2
per group, stretched over about half the semester. Howe
they also commented that the ability to analyze and pre
the rocket’s motion was exciting and motivational. Althoug
probably beyond the ability of many introductory studen
for those willing to tackle it, they should find this a rewar
ing project.

APPENDIX A: JUSTIFICATION FOR ISOTHERMAL
EXPANSION

In deriving Eq.~7! for the rate of change of pressure, a
approximation of isothermal expansion was used. Becaus
the brief time involved, an adiabatic approximation wou
seem more natural. An adiabatic expansion will result in
air cooling as it expands, reducing the pressure and the th
faster than an isothermal expansion. To test the sensitivit
the heat gain through contact with the walls of the rock
one can solve the heat flow equation,

¹2T52
1

a

]T

]t
. ~A1!

Herea is the ratio of the thermal conductivity to the specifi
heat and is taken to be approximately 231024 m2/s. For
simplicity, treat the rocket as an infinite cylinder. Then it
straightforward to solve Eq.~A1! in one dimension~radial!
with a fixed temperature at the walls of the rocket by exp
sion in Bessel functions.11 For the initial condition, use the
temperature change given by an adiabatic expansion, t
cally about 40 °C, taken uniformly across the cylinder. In 0
s, the temperature of the expanding air returns at least h
way to the ambient temperature 0.8 cm from the wall of t
rocket. Given that~1! the rocket is not really a cylinder an
~2! the air has considerable volume near the surface of
water and the front end of the rocket, then significantly le
than half the volume of the rocket deviates more than 20
from the initial temperature. Since neither the isothermal
the adiabatic approximations rigorously hold, I used the s
pler isothermal approximation. This had an additional adv
tage because my course did not include a block on ther
dynamics: my students had already learned about isothe
expansions in introductory chemistry. Finally, the validity
the approximation is confirmed by the agreement found
tween the model and our experimental results.

APPENDIX B: MODELING AIR DRAG

The force of drag on an object immersed in a fluid aris
as a result of two distinct processes:~1! skin friction arising
from shear forces within the liquid~laminar flow! and ~2!
transfer of momentum from the object to the surround
fluid in the form of eddy currents~turbulent flow!. The first
process yields a force that is linearly dependent on spee
the fluid, while the second yields a process which is dep
dent on the square of the speed of the fluid. A qualitat
explanation for each of these terms is given below.12

Consider the laminar flow of a fluid along the surface
an object. The velocity profile of the fluid will appear qua
tatively as in Fig. 6, with the fluid at rest next to the obje

.

t
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and flowing with a speedv at some distance away. Th
velocity profile results in a shear stress~force per unit area!,
s, on the rocket given bys5m(dv/dy), where m is the
coefficient of viscosity, a property of the fluid. The veloci
gradient can be approximated asKv/w, whereK is a dimen-
sionless constant based on the shape of the object andw is a
distance characteristic of the object. The viscous drag wil
proportional to the product of the shear stress and the sur
area of the object, orD5sA5mKAv/w. SinceK, A, andw
are factors related to the geometry of the body,D can be
rewritten as

D15mklv. ~B1!

Now k is a constant that depends on the shape of the ob
andl is a length~typically parallel to the flow!. For example,
a sphere hask53p and l is the diameter of the sphere.

At higher speeds, the flow will not remain laminar, b
will become turbulent. Then the object will impart mome
tum to the fluid by the generation of eddy currents and
drag will be based on an inertia force. The rate of moment
transfer is equal to the force exerted on the object, and ca
determined in the following way. Consider the object mo
ing a distanceDx through the fluid in a timeDt. The object
will displace fluid with massmfluid5k1rADx, wherek1 is a
geometrical constant,r is the fluid density, andA is the
cross-sectional area. The average speed of the eddy cur
will be proportional to the speed of the object~as long as the
speed is not too high!, so momentum imparted in the timeDt
is Dp5mfluid(k2vfluid)5k1k2rADxv. Therefore, the rate o
momentum transfer, and hence the drag, is~in the limit that
Dt approaches zero!

D25Dp/Dt5k1k2rAv~Dx/Dt !5 1
2CDrAv2. ~B2!

Here,CD is the familiar coefficient of drag.
While these are not rigorous derivations, they prove he

Fig. 6. Typical velocity profile of fluid in laminar flow in the vicinity of a
solid object. The dotted line is the linear approximation used in text.
227 Am. J. Phys., Vol. 68, No. 3, March 2000
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ful in understanding the basic physics underlying the t
forms of the velocity-dependent drag force. However,
student is still left with the question of which one to us
This question can be answered by considering the ratio of
two terms:

D2

D1
5

1
2CDrAv2

km lv
5S 1

2CD

k
D S A

l D S rv
m D . ~B3!

The first term in parentheses is a geometric factor tha
typically on the order of one. The second term can be
placed with a linear dimensiond ~again, typically parallel to
the flow!. Now the ratio can be identified as

D2

D1
}

drv
m

5NR , ~B4!

whereNR is known as the Reynolds number. For small v
ues of the Reynolds number (NR,1), the flow is laminar
and the drag is dominated by the viscous drag force,D1 . For
large values of the Reynolds number (NR.10 000), the flow
is turbulent and the drag is dominated by the inertial d
force, D2 . In between, the drag can be modeled as the s
of the two forces. For this study,m5231024 P (2
31025 kg/m s), r51 kg/m3, d50.1 m, andv520 m/s, so
NR'105. Thus, we are justified using only the inertial dra
force.
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