Analysis of a water-propelled rocket: A problem in honors physics
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The air-pumped, water-propelled rocket is a common child’s toy, yet forms a reasonably
complicated system when carefully analyzed. A lab based on this system was included as the final
laboratory project in the honors version of General Physics | at the USAF Academy. The numerical
solution for the height of the rocket is presented, as well as several analytic approximations. Five out
of six lab groups predicted the maximum height of the rocket within experimental erroeoo®
American Association of Physics Teachers.

[. INTRODUCTION height of the water and neglecting the velocity of the water at

. the surface compared to the velocity at the nozzle, we obtain
The study of rocket motion has been used for decades to P v

excite students with the study of physi¢See Refs. 14, for P=P,+3pu5, (3]

examplel Combined with the use of electronic computers,WhereP is the pressure inside the rocke, is atmospheric
students can begin to solve many interesting, “real world” P P

problems. In the honors versions of a calculus-based intro?'€SSure. ang, is the density of water. In addition to the
ductory mechanics course, | assigned my students the progSSumptions listed above, we must also take as valid all the
lem of analyzing the motion of an air-pumped, water-aSSumptions which apply to Bernoulli's equatigmincipally
propelled rocket. The final goal was to determine thelnCOmpressible, nonviscous, irrotational flow

optimum amount of water to put into the rocket in order to  Eguation(2) can be solved foo, and determines the ex-
achieve the maximum possible height. While we used smalf@ust velocity as a function of internal pressieThe other

toy rockets, most of this analysis would also apply to theterm needed to find the thrust from Hg) is the mass flow
popular demonstration using/2soda bottles pressurized by 'ate. Since the mass flow rate is just the volume flow rate

a bicycle pump. times the density of the water,
dM dv
Il. MECHANICS OF ROCKET MOTION ot = Pwgp = PwAde ©)

There are numerous references to the basic physics @fhere A, is the cross-sectional area of the exhaust nozzle.
rockets. In addition to those listed above, the reader maY:ombining Eqs(1)—(3) gives

consult almost any university physics text. The basic prob-
lem is to find the thrust, drag, and mass of the rocket as a T=2(P—Py)A.. (4)

function of time in order to find the acceleration, Velocity, inging the thrust therefore depends on finding the pressure
and position. The following sections develop the differentialihin the rocket as a function of time. As the rocket expels
equations to be solved numerically, as well as some useflﬁ:e water, the pressure and exhaust velocity drop, and thus
analytic approximations. the rate of pressure decrease drops. The solution begins with
A. Thrust two assumptions(1) the air in the rocket behaves as an ideal
gas and?2) the air expands isothermallgdustification for the
isothermal assumption is given in Appendix)A.hese as-
sumptions allow us to write

dM , (1) PV: PoVO, (5)

Ve 3.

dt whereP andV are the pressure and volume of air inside the
wherev, is the exhaust velocity of the ejected mass in therocket at any time before all the water is ejected &gcand
rocket's frame of reference artM/dt is the rate at which v, are the initial pressure and volume of air. Solving Por
mass is ejected from the rocket. In our case, the mass is theéhd taking the derivative with respect to time
water that is pushed out as a result of the elevated air pres-

The thrust,T, of a rocket due to the ejection of mass from
the nozzle is

T:

sure inside the rocket. Becausg and dM/dt both depend d_P: _ PoVo d_V 6)
on the pressure inside the rocket, finding the time profile of ~ dt V2 dt

the thrust is nontrivial. However, it is within the capability of T .

better introductory physics students. \'/\IngeStUbStltu“ng from Egs(2), (3), and(5) to eliminateV,

Bernoulli's equatior(conservation of energys applied at 9
two points along a streamline. This can be written generally dpP B p2 A [2(P— P,) .
1.2 — 1 2 . . .
P1t2pvit pgya=Pat zpuztpgYs. Equation(7) can be solved to obtaiR(t). The analytic so-

Figure 1 shows a schematic of the rocket. Take point 1 as thkition is presented below for comparison but, because of the
surface of the water inside the rocket and point 2 just outsideomplexity of the result, | had the students utilize a numeri-
the nozzle. Neglecting the pressure difference due to theal solution forP(t). To solve(7) analytically, separate vari-

223 Am. J. Phys68 (3), March 2000 © 2000 American Association of Physics Teachers 223



__ V=volume of air

__ V,=volume of water

Fig. 1. Sketch of the water rocket under consideration.

ables and integrate fromn=0 to t and fromP=P, to Ps,
which yields

- [Pw PoVo VPi=P, JPo—P,
- V2 PA, Ps Po
1 VPi— P, JVPo—P,
+ ——| arctan) ————| —arctan ———— .
VP, Pa Pa

8

Figure 2 shows a comparison between the numerical sol

tion of (7) and Eq.(8). Aside from the simplicity of numeri-
cally integrating(7) compared to inverting8) for P(t), solv-

ing it numerically also allows straightforward incorporation

of the next force, aerodynamic drag.
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Fig. 2. Comparison of analytical result of E@) with the numerical solu-
tion from Eq.(16). Numerical solution shows only every tenth point from
the numerical integration. Time of burnout is indicatedthy.
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B. Drag

Aerodynamic drag is an important velocity-dependent
force, but not always discussed in introductory physics. Tra-
ditionally the drag forceF, is expressed as

Fa=13CaApv?, 9

whereC, is the drag coefficientA is an area corresponding
to the geometry of interest, andis the density of air. At
moderate speedsee Appendix B the drag coefficient is
independent of the size of the object and speed of the
airflow.® In the case of these rockets, there were two compo-
nents contributing to the drag: the rocket body and the fins.
Figure 1 shows that the body is roughly ellipsoidal in shape.
The dashed line in Fig. 1 indicates the location of a bend in
the fins to help stabilize the rocket by inducing rotation. For
these rockets, drag is a fairly small effect, so the precise
value ofCy is not critical. Students could go to a number of
sources to obtain the necessary data to estii@gté—8 My
estimates ar€ poqy=0.05 andCy sins=0.1. The appropriate
area for the body is the circular cross-section normal to the
airflow. The area for the fins is the lateral area shown in Fig.
1, the surface are@f one side of each finwhich is roughly
parallel to the airflow. Combining these into a single value,
and using the local average air densitypef 1.05 kg/nt (for

an elevation of 7000 ¥t yields a total drag force

Fq=Dv?, (10

whereD=2x10"%N/(m/9?. This equation is incorporated
into the numerical solution for the motion of the rocket.

Now consider the following analytic approximation for the
reduction in the maximum possible height due to drag. First,
drag can be neglected during the thrust phase for the follow-
ing reasons: The thrust phase lasts only about 0.1-0.2 s, or
about 1.5 m out of a total altitude gain of 20 m. Furthermore,
drag is not the dominant force during the thrust phése
during the coast phase, for that maftefor a speed of 20
m/s, the drag force is only about 0.08 N, compared to the

Jhrust of 10-20 N. However, the force of gravity on the

empty rocket is about 0.4 N, so drag is a miribut signifi-
can effect during the coast phase.

Therefore, it is possible to treat the drag force as a pertur-
bation on the kinematic solutichFrom kinematicgi.e., ig-
noring drag, the velocity profile for an initial speed, is

v(y)=vs—20y. (11)

Now calculate the work done by the force of drag using this
profile,

y 2
W= F-ds=—Df v(y)?dy=—D(vgy—gy?).
0
(12

Applying this value of work in conservation of energy
(AK+AU=W,) and solving for the maximum height of
the rocket (n, is the mass of the empty rochet

2
Uo m
Ymax=34 55 (17 V1F D?vg/mig?).
The fraction under the radical is just the square of the ratio of
the maximum drag force to the force of gravity. For our
rockets, this value was about 0.05. Therefore it can be ex-
panded to first order. Finally, again use kinematics to replace

vo With t, the total time of flight of the rocket from launch to

(13
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impact, we obtain for the height of the rockgd first order One-way valve
in the drag coefficient —

1 D |
_ 2 2+4 1
h—sgt S rgt . (14 | / |

This expression can be used to estimate the height of the /

i

|

Movable Piston

rocket given the time of flight—a much simpler measure-
ment to make than using a sextant and trigonometry. This
result will be compared to the result of numerical integration
in a later section.

SNe—1

Ve

Fig. 3. Schematic diagram of the rocket pump, showing the main cylinder
with volume V. and empty space at the end of the pump with volurge

C. Rocket mass

Rocket “burnout” will be determined by one of two pos-
sible conditions: either the air expands until it forces all oflimit of 4 atm (P,) for the pressure inside the rock@iased
the water out of the rocket or it expands until it reacheson destructive testing of one sample that cracked at slightly
atmospheric pressure. While the latter could conceivably octess than 5 atin While it may have been possible to modify
cur if the initial volume of the air was much smaller than thethe pump in order to directly measure the pressure, | wanted
total volume inside the rocket, it is of little practical interest to keep the project as simple as possible. Therefore, the pres-
and is not considered further. In the former case, once all o§ure was calculated based on the volume of the rocket, the
the water is exhausted, the remainder of the air will rush outyolume of water in the rocket, and the number of “pumps.”
but the air will contribute little to the thrust and is neglected. Figure 3 shows a schematic drawing of the pump used. Ex-

The mass of the rocket constantly decreases until all of thamining the pump, it consists of a piston moving within a
water is ejected from the rocket. For a given pressure insideylinder. However, the pump is constructed so that there is a
the rocket, the volume of the air inside the rocket was foundsmall amount of empty space at the end of the cylinder. As
using Eq.(5). The volume of the watery,,, is thus the the piston is compressed, the air in the main cylinder with
difference between the volume of the air and the total volvolumeV, (31 mL) is forced into the small space at the end
ume of the rocketyy. Multiplying by the density of water of the cylinder with volume/,, (8 mL). Thus, as the rocket is
(pw=10°kg/m® and adding the mass of the empty rocketpressurized, the air from the main cylinder and small space at
(m,=399) yields the final result for the mass of the rocketthe end(with volumeV.+V,) is compressed into the small

as a function of the internal pressuieefore “burnout”): space and the empty space in the rodkeith volume V.
pu(V1—PoVo/P)+m, before “burnout” + Vo). The pressure aftgr+1 pumps P, 1, can be written:
MP)=1m, after “burnout". PVo+ Pa(Vet Vo)
(15) Pj+1= Vot V. : (18)

This expression is used in the numerical solution. [Note that asn—w, P,.;=P,=P,(V.+Ve)/V.=5P,.

Therefore it would appear that the rockets may have been
1. NUMERICAL SOLUTION originally designed to withstand the maximum possible pres-

Since | was working with second semester freshmen, the§ure the pump could generate, but the rockets had degraded
had very little experience with numerical methods. There- ith age] Thus the students could determine the number of

fore, the students used the simple Euler mettfodt order, ~PUMPS needed to achieve a pressure ®f 4 _ ,
forward time differenceto implement the numerical solu-  Finally, the students needed only to determine the opti-
tion. The students usedaTHCAD® to perform the computa- Mum water volume. They accomplished this task by repeat-
tions. My solution was implemented using the following seting the calculations for a range ®y's with the MATHCAD

of equations, combining the results of E¢®), (7), (10), and worksheet that they had developed. Figure 4 shows a plot of

(15) (the students used similar sets of equations maximum height versus volume of water f@g=4P,, both
2 including and excluding the effects of drag. Interestingly, the
P .—p _ Pa A /2(Pn_ Pa) At height is not especially sensitive to the volume of water near
R AV Pw ’ the maximum heighteven considering that the derivative is
zero at a maximufn With the modeling complete, the stu-
Uny1=vnta(Py,vp)AL, (160 dents were ready to launch their rockets.
Ynt+1=YntUnAt,
where IV. LAUNCHING
2A((P—P,)—Dulv| The students launched their rockets several times during a
a(P,v)= (17 single class period to compare the results of their model to

M(P) the actual performance of their rockets. The height was esti-
Once the students had made various measurements of theated in two ways. First, the students attempted to use tri-
rockets to determine the necessary physical parameters, ordygulation, but the available equipmefgrotractors and
two initial conditions were left to be determined: pressureplumb bob$ yielded less than satisfactory results because the
and water volume. Clearly, the higher the initial pressure, theincertainty in the height was too large. The second technique
greater the velocity of the ejected water, and hence th&as to measure the total time of flight for the rockets and use
greater the velocity of the rocket. Therefore, | set an uppeEg. (14) to estimate the maximum height. Figure 5 shows
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25 T T I T V. CONCLUSIONS

Most students reacted favorably to the project. The stu-
dents worked in groups of 3—4 to outline their procedures,
develop the model, and predict the maximum height. Stu-
dents did comment on the amount of time required, 10—-20 h
per group, stretched over about half the semester. However,
they also commented that the ability to analyze and predict
the rocket’s motion was exciting and motivational. Although
probably beyond the ability of many introductory students,
for those willing to tackle it, they should find this a reward-
ing project.

Maximum height of rocket (m)

APPENDIX A: JUSTIFICATION FOR ISOTHERMAL

! l | I EXPANSION
40 60 80 100 120

Volume of Water (mL)

In deriving Eq.(7) for the rate of change of pressure, an
approximation of isothermal expansion was used. Because of
the brief time involved, an adiabatic approximation would
Fig. 4. Frgdicted height as a function o_f init_ial Wate_r volume in t_he rocket.seem more natural. An adiabatic expansion will result in the
The solld_ line shows the result of num_encal integration of @6) while the air cooIing as it expands reducing the pressure and the thrust
dashed line shows the result neglecting drag. . ' : o

faster than an isothermal expansion. To test the sensitivity to
the heat gain through contact with the walls of the rocket,
one can solve the heat flow equation,

maximum height versus time of flight for the analytic ap- ~ V?T=—— —. (A1)
proximation of Eq.(14) and numerical integration of Eq.
(16). The time of flight from numerical integration @¢1.6) Here « is the ratio of the thermal conductivity to the specific
depended upon the initial volume of water—the point theheat and is taken to be approximatelx 20~%m?s. For
curve doubles back indicates the time of flight correspondingimplicity, treat the rocket as an infinite cylinder. Then it is
to the optimum water volume. The error bars are based onlgtraightforward to solve EqA1) in one dimensior(radial

on the uncertainty in measuring the time of fligestimated  with a fixed temperature at the walls of the rocket by expan-
to be 0.2 § propagated through Eq14) using standard sion in Bessel functions: For the initial condition, use the
techniques? Of the six groups, five predicted the height  temperature change given by an adiabatic expansion, typi-
determined by time of flight within experimental uncer- cally about 40 °C, taken uniformly across the cylinder. In 0.2
tainty. The only group which was not within uncertainty s, the temperature of the expanding air returns at least half-
elected to neglect drag in their model. The success of theay to the ambient temperature 0.8 cm from the wall of the
students as a whole is particularly significant considering theocket. Given thatl) the rocket is not really a cylinder and
model had no free parameters! (2) the air has considerable volume near the surface of the
water and the front end of the rocket, then significantly less
than half the volume of the rocket deviates more than 20 °C
from the initial temperature. Since neither the isothermal nor
the adiabatic approximations rigorously hold, | used the sim-
pler isothermal approximation. This had an additional advan-
tage because my course did not include a block on thermo-
dynamics: my students had already learned about isothermal
- expansions in introductory chemistry. Finally, the validity of
the approximation is confirmed by the agreement found be-
tween the model and our experimental results.

25 ! I L

5 APPENDIX B: MODELING AIR DRAG

Maximum altitude (m)

The force of drag on an object immersed in a fluid arises
- as a result of two distinct processé$) skin friction arising
from shear forces within the liquidaminar flow and (2)
transfer of momentum from the object to the surrounding
| | | fluid in thg form of eddy cu_rrentsturbulent flow. The first

Y 3 25 4 .5 process yleI(_JIs a force that is linearly dependen_t on speed of
the fluid, while the second yields a process which is depen-
dent on the square of the speed of the fluid. A qualitative
Fig. 5. Maximum altitude vs time of flight. The solid line indicates the result ©XPlanation for each of these terms is given betéw.

of numerical integration of16) and the dashed line indicates the analytical Cor]S|der the Iam'nar ﬂOV_V of a fluid ‘?‘Ion_g the surface _Of
approximation given by Eq(14). Error bars indicate uncertainty in esti- an object. The velocity profile of the fluid will appear quali-
mated height based on uncertainty in measuring time of flight. tatively as in Fig. 6, with the fluid at rest next to the object

time of flight (s)
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ful in understanding the basic physics underlying the two
forms of the velocity-dependent drag force. However, the
student is still left with the question of which one to use.
This question can be answered by considering the ratio of the
two terms:

Dz_%CDPAUZ_ %CD) A\ pv
D,  kumlv \ kU1 )

The first term in parentheses is a geometric factor that is
. typically on the order of one. The second term can be re-
placed with a linear dimensiom (again, typically parallel to
the flow). Now the ratio can be identified as

Fig. 6. Typical velocity profile of fluid in laminar flow in the vicinity of a D
solid object. The dotted line is the linear approximation used in text. _Zoc =Ng (B4)

(B3)

A\

whereNg is known as the Reynolds number. For small val-

and flowing with a speed at some distance away. This UeS Of the Reynolds numbeNg<1), the flow is laminar
velocity profile results in a shear stresrce per unit arga ~ 2nd the drag is dominated by the viscous drag folce, For

o, on the rocket given byr=u(dv/dy), where u is the !arge values of the Reynolqls num_b(NR(> 10 000),_the flow
coefficient of viscosity, a property of the fluid. The velocity IS turbulent and the drag is dominated by the inertial drag
gradient can be approximated lés/w, whereK is a dimen- force,D,. In between, the drag can be modeled as the sum
sionless constant based on the shape of the objecivasé  Of the two forces. For this studyu=2x10""P (2
distance characteristic of the object. The viscous drag will be< 10~°kg/ms), p=1kg/n?, d=0.1m, andv=20m/s, so
proportional to the product of the shear stress and the surfadég~10°. Thus, we are justified using only the inertial drag
area of the object, dd = cA= uKAuv/w. SinceK, A, andw  force.

are factors related to the geometry of the boBycan be

rewritten as ID. S. Gale, “Instructional uses of the computer. Rocket trajectory simu-
D= uklv. (B1) lation,” Am. J. Phys.38, 1475(1970.
Robert A. Nelson and Mark E. Wilson, “Mathematical Analysis of a
Now k is a constant that depends on the shape of the objectvodel Rocket Trajectory,” Phys. Teachd, 150—161(1976.
andl is a length(typically parallel to the flow. For example,  3S. K. Bose, “The rocket problem revisited,” Am. J. Phy&l, 463—464
a sphere hak=3 and| is the diameter of the sphere. (1983 ) , .

At higher speeds, the flow will not remain laminar, but §é5H('196;5Wdy’ The physics of perfect rockets,” Am. J. Ph¥, 322—
will become tl_"rbment' Then the object will impart momen- ®John D. Anderson)ntroduction to Flight (McGraw—Hill, New York,
tum to the fluid by the generation of eddy currents and the 1985, 2nd ed.
drag will be based on an inertia force. The rate of momentumtHandbook of Engineering Fundamentalsdited by Mott Souders and
transfer is equal to the force exerted on the object, and can bedvid W. Eshbach{Wiley, New York, 1975, 3rd ed.
determined in the following way. Consider the object mov- 'Gerald M. Gregorek, “Aerodynamic Drag of Model Rockets,” Model

ing a distance\ x through the fluid in a time\t. The object ?g;:lget Technical Report No. TR-11, Estes Industries, Inc., Penrose, CO,

will disD'_ace fluid with masshgig= klPAA_X, WherEk_l iSa  Russell A. Dodge and Milton J. ThompsdFiid Mechanics(McGraw—
geometrical constantp is the fluid density, andA is the Hill, New York, 1937, Chap. XII, Art. 171.

cross-sectional area. The average speed of the eddy curreritgmes H. Head, “Faith in Physics: Building New Confidence with a Clas-
will be proportional to the speed of the objéas long as the  Si¢ Pendulum Demonstration,” Phys. Tea@3, 10-15(1995.

: . . . . phillip R. Bevington and D. Keith Robinsolata Reduction and Error
speed is not too highso momentum imparted in the tinde Analysis for the Physical Scienc@dcGraw—Hill, New York, 1992, 2nd

is Ap=mgg(Kovuia) = KikopAAxv. Therefore, the rate of  eq. p. s0.
momentum transfer, and hence the dragjnsthe limit that  See, for example, Mary R. Boablathematical Methods in the Physical

At approaches zejo Sciences(Wiley, New York, 1983, 2nd ed., pp. 558-562, or George
Arfken, Mathematical Methods for Physicist®\cademic, New York,
D,=Ap/At=K;kpAv(AX/At)=3CppAv?. (B2) 1985, 3rd ed., pp. 448-450, 513-593.
. . . 125ee, for example, Ref. 8, Chaps. VIII and XIl, or James W. Daily and
Here,Cp, is the familiar coefficient of drag. Donald R. F. Harlemarkluid Dynamics(Addison—Wesley, Reading, MA,

While these are not rigorous derivations, they prove help- 1966, Chaps. 8 and 9.
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