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l. Introduction

Water rockets can achieve upward velocities on the order of 70m/s (157 mph). For thisto
happen, a significant amount of the energy stored in the presaurized gasis converted into
Kinetic energy of the rocket. This converstion isavery rapid process sincethe thrust phase
generally takes about 1/10 second. The use of alaunch tube and the proper amount of water
in the rocket serve to increase the dficiency of this conversion.

This multi-part document describes my mathematica approach to modeling the thrust phase of
a onventiona water-rocket. By conventional | mean a verticdly flying rocket which uses a
presaurized inert gas, principally stored inside the rocket, asits energy source. Although | use
the general term water rocket, the analysis also coversthe cae of a presaurized rocket
containing no water.

| assume that the reader is familiar with caculus and basic dasscd physics. Some knowledge
of fluid dynamicsis aso helpful. | exped that this document will be mostly of interest to
hard-core types who write and use water-rocket smulations. | have incorporated much of the
material hereinto ajava gplet smulator available & my website:

http://ww. cchem ber kel ey. edu/ ~j sngr p/ dean/ bencht op

In general the governing equations do not permit an analyticd (exad) solution to rocket
velocity as a function of time. Rather, we must get a numericd computer solution to a set of
equations. The rocket velocity and altitude & the point of 'burnout’ (when the presaure energy
has been exhausted) can be used subsequently to estimate rocket apogeeheight and time using
analyticd equations | describe separately on my website.

The thrust portion of flight for awater rocket is composed of up to threephases, eat
identified by the thing that is being expelled from the rocket at the time: (1) launch tube, (2)
water, and (3) gas. | will discussthese phasesin turn after presenting some preliminary
mathematics they have in common.
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ll.Preliminary Mathematics
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Reference Frames

First | will establish the reference frames or coordinate systemsto be used. Fig. 1 showsa
bottle-based reference frame where z describes the axial distance from the bottom or outlet of
the bottle. Whenever | use the word axial in this document, | mean in the z direction.

R(2) givesthe radius of the bottle as a function of z and H(t) is the height of the water/gas
interface as a function of time.

A second reference frame is shown in Fig. 2 and takes the launch pad asits origin, y = 0. y(t),
v(t), and a(t) are respectively the altitude, velocity, and acceleration of the bottle as functions
of time. | will assume vertical (or nearly vertical) flight of the rocket during thrust. To adapt
the equations for nonvertical flight requires a few substitutions such as replacing the
gravitational constant g with gcos$ where 9 isthe angle the reference frame of Fig. 2 takes
with respect to vertical.

Bottle Shape

The bottle-based reference frame (Fig. 1) will be the one in which fluid flow in the bottle will
be determined. The function R(2), required as input, plays an important role in those
calculations, and several other functions will be derived fromiit. First among these isthe local
cross-sectiona bottle area:
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Alz)=rtR*z).

The shape of the bottle can be marse-grained if
desired to smplify the analysis. Fig. 3 gves
some examples where the radius function R(2) is
composed of successve linea segments. The
rightmost shape obvioudly affords the eaiest
analysis, but saaifices ©me acworagy.

The nozZze region is that part of the bottle where

R(z) becomes gnall, in the vicinity of the outlet.

| use the term 'throat’ to refer to the most
narrow part of the nozzle. In defining the shape

of the bottle with R(2), it is more important that it be acarate in the nozze region rather than
the 'bulk’ or 'tank’ region (where Ris large) if atradeoff must be made.

Fig. 3 Coarse-grained bottle shapes.

Unidirectional Flow

One of the most important smplifying assumptions | make is that the fluid flow within the
bottle is unidiredional or mostly 1-dimensional. That is, non-axial components of the fluid
velocity are small compared to the aial (z-direcion) component and can be negleded. In
red life there will be non-axial components of flow, but in many cases their explicit inclusion
in the eguations would not change the model predictions substantially. One mnsequence of
this assumption isthat it eliminates radial variationsin fluid presaure, temperature, and
density. Note that the term fluid in this document means either the gas (usually air) or the
water. For the unidiredional flow assumption to be reliable, the taper of the bottle must be
gradual rather than abrupt in the nozze region. Thisis not too bad of an assumption for soda
pop bottles.

The function u(z,t) designates the aial fluid velocity relative to the bottle and p(zt) isthe
fluid density. For z<H (t) (below the interface the density isthe mnstant value for water,
p,,~998kg/m>. For z>H(t) (abovetheinterfac the density isthat of the mmpressed

gas, and will vary with time.

A few other useful variables are

Uy (1)=U(0,1)

pout< >_p<0’t>
A= A(0)

t
t



p. 4

where the subscript out indicates a property at z= 0 or the bottle outlet. Note that fluid
velocity u and u. Will always take negative values indicating downward flow out of the
bottle.

Mass and Volume

We must know the massof the rocket at all times. The bottle mass(including fins, nose wne,
etc.) isafixed value, m,. The massof the fluid is determined by integrating density over the
volume of the bottle. Thetotal rocket massisthus

Me=my+ | pdV
(1)

zmax
=my,+ f p Adz
0

When the limits are not spedfied on an integral over dV, it isimplied to be over the enttire
bottle volume, V. Note that the nomimal volume of soda bottles (2 liters, for instance) is not
necessarily the red volume of the bottle sincethere is usually additional gas gace &ove the
soda pop.

Also, because bottles constructed of PET and other plastics gretch somewhat upon
presaurizaion, | usualy assume V; for the presaurized bottle to be 3% greaer than the bottle
volume & ambient presaure. Whileiit istrue that this augmented volume will disappea asthe
bottle depresaurizes, the important thing isto get a wrred acounting for the energy stored in
the compressed gas initially occupying that augmented volume. The relaxation of the
stretched plastic walls is adding yet more energy to the system, but | believe that it is minor in
comparison to the cmpressed gas energy.

For use later | also define afunction giving the anount of water in the bottle based on the
height of the gas-water interface & any given time:

VW(H):Hf Adz. (2)

Vo and Ho will i ndicae the initial values for the respedive quantities.

Equation of Bottle Motion
A typicd starting point for describing classcd motion is Newton's Second Law:

dv
m—=ma=F
dt
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Unfortunately, this equation only works for a closed system, or one that does not exchange
mass with its surroundings. In order to treat the water rocket, an open system, we need a
more general equation of motion:

d

a(mb\H_f p(LH‘V) dV) = (Pout_ Patm) Aout+Fdrag_rnt0tg + I'?](l'lout_'_\/)

- — - — 3
rate of changein external forces momentum flow
rocket momentum thru outlet

where (u+v) isthe velocity of the fluid relative to the ground, (Py,—P.m) isthe pressure
difference between the exiting fluid and the atmosphere, the external drag force is
I:drag:_%CD pathbvlvl (4)

and the gravitational force on the rocket is —m 9. T ineq. (3) isthe rate of changein
mass of the rocket, and can be determined by looking at mass flow through the outlet:

_dm,

Ishdt

= Pout Your Aout - (5

Notethat rh takes anegative value. The left side of eq. (3) can be shown to be

%(me—Ffp(U—FV)dV): mtota+r°nv+%<fpudv> : (6)

Next we make the substitutions
Fimz—%“pudV) (7
and Fu, = (P = Pam) Ayt MUy, (8)

in eg. (3) and with a bit of rearranging get an expression for the acceleration of the bottle:

Fot Fint F
a= thr int drag g (9)
mtot

The Fin: Term

As one might expect, Fu of eg. (8) isthe traditional thrust force for rockets and Farag the
external drag force, but what is Fin? It isareaction force due to internal acceleration of mass
in the rocket.



p. 6

There are many suitable analogies that explain why thisterm is necessary. Here isone:
consider a cannon firing aball. When the powder charge ignites, the ball beginsto accelerate
down the barrel. If one were to calculate the thrust term, Fy., for the cannon as defined
above, it would be zero until the instant the ball exits the barrel. If there were no term Fi
then eq. (9) would predict that the cannon would feel no force and would not recoil until the
instant the ball exits the barrel. Isthisright? No, because the cannon recoils continuoudy as
the ball accelerates down the barrel. To correctly model this requires the inclusion of aterm
such as Fic. Thisterm does not change the total amount of recoil or reaction force acting on
the cannon, but merely redistributes it properly in time.

For some rockets Fi. can safely be neglected, either because the movement of mass within the
rocket isrelatively constant in time or because we only care about the total impulse. Inthe
case of water rockets, however, the acceleration of the rocket couplesto the water flow
equation and so Fin: should not be neglected during the water-impulse phase.

Getting a Solution

Eq. (9) givesthe bottle acceleration in time. Additional equations discussed below are needed
to generate the pressure and flow termsthat go into egs. (7) and (8). To relate the
acceleration to the bottle velocity v and altitude y requires the following two differential
equations be coupled to the rest

av_ . dy_
dt_a’ dt_v' (20)

All the differential equations must be simultaneously integrated over time in order to get a
solution. It isarelatively routine matter to generate a solution by computer for these kinds of
equations using a finite-differencing scheme (for an example, see Appendix C).

Ideal Gas Law

Thisisthe simplest equation of state relating the various properties of a gas such as pressure,
temperature, and density. It is generally valid around ambient pressure and temperature. The
pressures typical of soda-bottle rockets will not cause significant deviations from the ideal gas
law. Itis

P=pRy T (11)

where Ry isthe ideal gas constant (8.3145 Jmol-K) divided by the molar mass of the gas
(0.028964 kg/mol for air). P and T are absolute pressure and temperature, respectively. Note
that absolute pressure is gauge pressure plus the ambient or atmospheric pressure Pam.  In
fact, for consistency all pressure variables used in this document will be absolute pressures.
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Adiabatic Expansion

The expansion of the compressed gas in the rocket is its principle source of energy. | will
assume that the compressed gas expands adiabatically. This meansthat it expandsin such a
short time frame that heat cannot flow fast enough from the outside world into the gas to keep
it at a constant temperature. As a consequence the gas cools as it expands.

Thisis probably a good assumption given that the typical thrust phase lasts around one-tenth
of asecond. During thistime outside heat will penetrate only about a millimeter from the
walls into the gas in the bottle, due to the insulating properties of the gas. Also consistent
with the adiabatic assumption is the oft observed formation of fog inside the bottle during
launch, due to cooling of the internal gas.

Without delving into how they are derived, | will simply state the adiabatic gas relations

P p ¥ =constant

oL (12)
T p~ Y=constant
where y=C,/C, istheratio of specific heats. For air the ratio isvery closeto 7/5 or 1.4.
The above equations basically allow usto connect the conditions of thegas (P, T, or p) at
one time or location with the conditions of the gas at another time or location.

Now we are in a position to examine the three thrust phasesin greater detail, beginning with
the launch tube (that is, if you are till with me at this point).

lll.Launch-Tube Phase

The launch tube acts as an internal piston, and exerts a force on the rocket equal and opposite
to aforce the rocket exerts on the tube. The launch tube phase lasts so long as y, the height
of the rocket from itsinitial position, islessthan Ly, the length of the tube.

During the launch-tube phase | assume that a negligible amount of fluid escapes the rocket,
that is the launch tube forms a close but not tight fit inside nozzle. The cross-sectional area of
the tube based on its outside diameter is denoted by Ao, while the area based on the inside
diameter (the hole in the tube) is denoted by Ar .

Equation of Motion

To calculate the acceleration of the rocket we start with the appropriately simplified version of
eq. (9):
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Fon+F
a= thr drag g (13)
Myt

While there is some rearrangement of fluid within the bottle as the rocket moves up the launch
tube, Fir: of eq. (7) is generaly negligible.

In order to get the thrust force of eq. (8), we need to consider the movement of gas within the
system. Assuming the launch tube has a moderately sized opening, there will be rapid fluid
communication between the launcher apparatus volume and the bottle volume. This means
they will share a common pressure, which will decrease in response to an increase in shared
volume. The volume change produces a density change according to

p Vinit

—_—= 14

Po Vit YAw (14
Viie=V1+V, =V o~ LT(ATO_ATI ) (15)

The left side of eq. (14) isthe the density of gas in the system over itsinitial value. Viqi is the
initial gas volume of the combined system and is broken into its congtituent partsin eg. (15).
V/ isthe launcher gas volume not including the launch tube itself, V;, isthe empty bottle
volume, and V. is the initial amount of water added to the bottle given by eqg. (2). Thefina
termsin eg. (15) account for the volume inside the rocket initially occupied by the launch
tube.

In response to the decrease in gas density, the pressure and temperature decrease
adiabatically. The applicable forms of egs. (12) are

P (e T (o v
30—(,,—0) ,T—O—(,,—O) to

where the subscript 0 again indicates initial valuesin the bottle.

The force on the rocket comes simply by the difference between the internal and external
pressure:

Fin=(P=Pan) Aro (17)

The Solution

To summarize for the launch tube phase, equations (10) are the differential equations which
must be solved along with auxiliary equations (13) through (17). A solution explicit in time
can be obtained only by numerical integration.
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However, there is an analytical solution for velocity as a function of position:

1y 1/2
2I:)Ovinit yATO I:)athTO
+1 -1|-|——+g]2 18
rntot(l_Y)[( Vinit ) ] ( My g) Y ( )

Eq. (18) is obtained by doing a mechanical energy balance on the system and assuming that
Farag IS Negligible:

v(y)=

y

1

SMe V=] Fidy—mygy (19)
0

Vaues such as gas pressure and density recorded at the conclusion of the launch-tube phase
(y = Ly) will be given a subscript 1.

Side note: bottles will fail if the internal pressure causes too much stress on the walls. For
most rockets that contain water, the maximum pressure during launch will be in the vicinity of
the bottle outlet, at the moment just before the bottle has cleared the launch tube. The
pressure applied there will be approximately P...~P;+(a,+9g)p,H where P, and a, are
evaluated at y = L.

V. Water-Impulse Phase

If water is contained in the rocket it will then be expelled due to the force of the high-pressure
gas. A few additional equations need to be added to our pantheon to describe the flow of
water through and out of the bottle.

Mass Continuity

Mass continuity, also known as mass conservation, isimportant in aimost all fluid flow
problems. Eq. (5) aludesto this principle. The genera version that applies to our
unidirectional flow is

E(i(pA)+d—dZ(puA)=O (20)

This equation basically states that the rate of change in mass contained in athin slice of fluid in
the bottle isrelated to the difference in flow into and out of that dlice.

When describing flow of the water, the first termin eqg. (20) vanishes since we can treat water
as incompressible (constant density p,,). The second term reduces to
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uA=U,, A,:=function of time only (21)

Since A(2) is known beforehand, this means that we can expressthe water velocity at any z
value in terms of one variable, the exit velocity Uou.

Water Motion from the Bernoulli Equation

The ceebrated Bernoulli Equation is a statement of conservation of energy in africtionless
irrotational flow of fluid. (However, as discussed in Appendix A it can be modified in an ad
hoc manner to acaount for frictional losses.) The form that many textbooks present is a
Bernoulli Equation for stationary or steady state flow. However, the flow in water rocketsis
highly transient—the water starts out in aquiescent state and is rapidly accderated. The
transient Bernoulli equation for water flow in the bottle can be stated as:

ou uw P _
f(a_t>-dz+4[?+p—+(a+g) ]—0 (22)

w

where the integral and the difference ( A ) are together taken between any two locaions (z
vaues) inthe water. Eq. (22) isadifferential equation. Inthe steady-state cae the
differential term on the left would vanish and an algebraic equation would be left behind. Also
unusual in the present case isthe presence of ain the (a + g) z term, which acounts for the
fad that the bottle reference frame to which u and z are referenced is accéerating in the
verticd diredion.

The most convenient two locations or limitsto use in eg. (22) are the outlet (z= 0) and the
gas/water interface(z = H(t)). The resulting equation is

y u,—ui, P,—P
J"(a_u>.dz+ H2 out Hp X +(a+g)H=0 (23

To get eg. (23) into shape we note the following:

(1) Sincethe water is essentially incompressble, the outlet pressure must be in medhanicd
equili brium with the ambient presaure, hence Poyt = Pam.

(2) The water presaure & the interfacewill be the same & the gas presaire, which depends
adiabaticdly on the density of gas, which in turn depends on the height of the interface This
gives us arelation similar to eqs (14) and (16):

. Y y_ V=V "
PH‘“(Z) P(m) 9
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where P; and p, arerespectively the gas pressure and dengity at the beginning of the water-
impulse phase.
(3) Mass continuity, eg. (21), alows water velocity u at any location to be related to Uou.

The above relationships alow eqg. (23) to be transformed into

du P P
B(H)T:“tJrC(H)ufMJr D(H)p—l— A +(a+g)H=0 (25)

with newly defined functions of H given as

AOLIt )2 1
AH)) (26)

The value of H is determined on the fly by a coupled differential equation that results from the
fact that the interface moves with the same velocity as the adjacent fluid:

dH Aout uout
aH _ - Powlo 27
dt M TA(H) (27)

Equation of Motion

To calculate the acceleration of the rocket we start with the full version of eqg. (9):

Fot Fint F
a= thr int drag g (9)
mtot

Here iswhere the internal fluid acceleration term (eqg. (7)) finally gets used:

H

-
Fii= " { p,UAdz

=—ﬂ(mH) (28)

dt
. dup, A
= Ponut(H T+m Uout
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Asfor the thrust force, eg. (8), we get the expeded relationship

I:thr: pWA U(Z)ut ' (29)

out

We must also keep in mind that the massof the rocket in eg. (9) will be changing in time
acording to the interfaceheight. Including both the massof gas and of water in the total
mass we get My=m,+p,(V,=V o) +p,V,(H) .

Transition from Launch Tube to Water Impulse

It isinteresting to compare the mmputed acceaeration of the rocket at the last moment of the
launch-tube phase to that at the first moment of the water-impulse phase. Negleding the
decderation dueto air drag, we get:

( Pl_ I:>a’[m) ATO

launch tube: =—0+
= Mo

water impulse:  a,=—g+ (30

(Pl_Patm)Aout B(Ho) _pWHOAout N
My Ho My

According to the &ove equations there isarapid jump in accéeration asthe rocket cleasthe
launch tube. Most of thisis due to the readion force of setting in motion the water relative to
the bottle. Nevertheless the water-impulse phase is lessefficient than the launch-tube phase
becauise it requires more energy expense (in terms of gas expansion) for the same anount of
thrust.

What is the optimal amount of water to put in the rocket? This must be solved numericdly,
by varying the anount of water and using a full model to generate gpogeeheight. The water
serves as areaction massand can increase thrust efficiency over a gas-only rocket. However,
the water occupies bottle volume that could otherwise be occupied by energy-containing
presaurized gas. Thereis atrade-off between thrust efficiency and energy storage, resulting
in an optimal proportion of water given fixed total volume and other rocket parameters. The
optimal proportion of water seems to be largely independent of rocket presaure, and is
typicdly around ¥ for 2-liter soda bottles.

The Solution

Following the initial accéeration given by eq. (30) above, the accéeration during water
impulse must be mmputed by eq. (9) from knowledge of dua/dt, Uot, and H. These ae
obtained by integrating egs. (25) and (27). When egs. (10) are alded into the mix that makes
four ordinary differential equations that must be simultaneoudly integrated by computer for the
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water-impulse phase. The @nclusion of this phase is sgnaled by the mndition H <0 .
Vaues sich as gas presaure and density recorded at that time will be given a subscript 2.

Inred life, the water-gas interfacewill become unstable nea the conclusion of the water-
impulse phase, probably when H bemmes lessthan the nozZle diameter. High-speed gas will
bre through the interface ad for perhaps a few milli seconds the fluid exiting the nozze will
be amixture of water and gas. Some have wondered if this mixed flow will have asynergistic
(increased) thrust effed. Thisis not known. Without further information | choose to ignore
it, asuming instead a dean transition between water and gas exiting the nozze.

V.Gas-Impulse Phase

The governing equations for compressble high-spead gas flows are generally more complex
than for incompressble fluids such aswater. For instance, in the eguation of continuity, eq.
(20), we must retain al the terms snce p can depend on both zandt. However amajor
simplification can be made for our rockets. The smplification relies on the 'bulk’ or ‘tank’
region of the bottle being large mmpared to the nozze region. If thisisthe cae then two
things happen:

(1In the tank region, velocities and spatial variations in gas density are relatively small and
change relatively dowly intime. Thisis known as a stagnation condition. However, the
density ill deaeases fast enough for adiabatic expansion to continue to hold.

(2)High-speed flow in the nozZe region is quasi-steady state, that is, the gas there responds
essentially instantaneoudly to conditions in the tank region. All the spatial variations in gas
density are concentrated in this region.

These observations suggest that we formally divide the bottle into the two regions. Gas
properties in the tank region will be given asubscript t. The two important locaions in the
nozze ae the throat or narrowest part (subscript *) and the outlet (subscript out).

Fig. 4 shows the two types of nozZes.
The one on the left is a anverging-
diverging or Delaval type, heredter
abbreviated as CD. The one on the
right is a mnverging-only type,
heredter abbreviated as C, and isthe
default nozzle on soda bottles. For
the C nozZe the throat and the outlet

coincide. Fig. 4 Nozzes
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The mathematics covering the CD nozzle is more complex than for the C nozzle. Because the
C nozzle is the one primarily used on water-rockets, | will emphasize it here.

Mass Continuity

In the tank region, the density depends on the amount of mass which has exited through the
nozzle. Thisis expressed as a differential equation:

dp, 1
da Vv, (3

where p, takesasitsinitial condition the value p,. Because m isnegative, p, will
decrease in time.

In the nozzle region, the quasi-steady-state condition is expressed as
P U A= Py Uoy Ay =1h (32)

where the first equality comes from continuity eg. (20) assuming the first term to be negligible
compared to the second; and the second equality comes from eqg. (5).

It is convenient to describe the velocity in terms of the local Mach number M, defined
according to the local speed of sound c:

M =|ul/c 23
c=yRy T &

In the stagnant tank region, M is effectively zero.

Nozzle Flow Regimes

There are two different flow regimes in the nozzle. In order of decreasing tank pressure they
are

I. Choking flow.

Choking flow meansthat M = 1 exactly in the narrowest part of the nozzle, A-. Thisthroat
condition establishes the maximum rh that any nozzle can sustain. This meansthat a CD
nozzle and a C nozzle each attached to the same tank and having the same A- will expel mass
at the samerate. In general the outlet pressure will not equal ambient and so the pressure part
of the thrust force, eqg. (8), will be nonzero. For the C nozzle choking flow will conclude
when the throat pressure P- drops below ambient pressure. The pressure in the tank at that
moment is given as
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+1\-5
Ptrans:Patm(yz )y ' (34)

The CD nozzle is able to accelerate gas to supersonic speeds in its diverging section.  During
most of the choking flow regime a shock wave will lie just ouside the nozzle exit, where the
gas abruptly changes from supersonic to subsonic speeds. However, before the conclusion of
the choking flow regime, the shock will move into the diverging section. The presence of the
shock inside the CD nozzle does not ater the flow rate, but does alter the amount of thrust
generated.

I1. Purely subsonic flow.

Unlike in the choking flow regime, in purely subsonic flow rh will be sensitive to the ratio
between inlet and outlet pressures. The outlet pressure is constrained to be ambient pressure.
It turns out that the math covering this regime is more difficult than for choking flow.
However, it is not necessary to make completely accurate calculations here because this

regime comes at the very end of the gas-impulse phase and relatively little energy isleft in the
bottle to produce thrust.

Other Nozzle Relations

The following relation will give the gas density at any location in the nozzle (given by M) by
relating it to the stagnant tank density p; .

g
ﬁ:(1+—y_1 M 2)” (35)
Py 2

We can combine eg. (35) with the adiabatic relationsto get P or T at any point in the nozzle

defined by its Mach number:
P_(2) . P_(r)
P, \ o P, \ e

T (e\ . T ()

T, \»~ " T, \p
For instance, by setting M = 1 we can obtain the conditions in the throat during choking flow.
In addition, a simple relation for gas throat velocity under choking flow is

2
u|=c.= VyR, T. Z\/y—j/lRMTt (37)

(36)
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On the other hand, if the nozZe is operating in regime 11, M must be determined at the exit by
letting Pow = Pam. 1N either case, once we know the Madh number at one locaion (areaA,) it
can be computed for another location (areaA,) in the nozze by

(39)

1
A M, [ 2+(y-1)M; o
A, M| 2+(y-1)M?

Noticethat eq. (38) isimplicit in M; and M,. Infad, there can be more than one solution for
the same aearatio—one solution corresponding to subsonic flow and the other for
supersonic flow.

Tank Blowdown Solution

Using a combination of the aove relations it is possble to solve differential eq. (31) to get the
gas density in the tank as afunction of time. This, in turn, can be mnverted to tank presaure
through eg. (36). The solution for regime | (choking flow) is

t 2_y
Pt:PZ (1"‘?)1}/ (39)

where P; isthe tank presaure & the start of blowdown. The nozZe time constant is given by

y+1
= Vb 2 y+1 2(y-1) (40)
A c,\y-1 2

with c,=+vy Ry T, theinitial speed of sound in the tank.

As previoudy stated, the flow will transition to purely subsonic when P; drops below Pryans.
An approximate but fairly acairate way to ded with the subsonic regime is to continue to use
the aove solution. However, since a. (39) overestimates the massflow rate out of the tank
during subsonic flow, it is necessary to compensate by assuming that all flow stops when the
tank presaure reades some stopping presaure, B Py, rather than Pam. By cdculating the
exad subsonic-flow solution (which | do not give here), | have enpiricdly determined a
simple expressonfor f§:

B=1.03+0.021y . (41)

The time from the beginning to the end of the gas-impulse phase can be estimated by inverting
€g. (39) and combining with eq. (41) to give
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P, \%
Y
las=T (BTM) -1 (42)

The end result isthat the gas-impulse phase takes sveral hundredths of a second for an ‘open-
mouth' 2-liter soda bottle—about the same time a the water-impulse phase.

C-Nozzle Thrust Solution

Again using a ammbination of the aove relations, it is possble to solve aj. (8) for the thrust
force generated by the C nozze. Thisforcewill be a @mbination of the presaure forcedue to
the exhaust of high-presaure gas, and of the pure momentum carried by that gas. Inthe
expresson given here the forceis lely afunction of tank absolute presaure:

1
Fiv = 2P A (ﬁ)— Pam A (43)

By integrating the thrust force over time, using eg. (39) for the tank presaure and eqg. (42) as
the stopping point, we get the total impulse (change in momentum of rocket) due to
exhausting gases from a C nozZe:

+1 -1
| — I32\/b 8 1_ B I:>a'[m }/2—y+ Ptrans 1_ I32 }/2—}/ (44)
c G, y+1 I32 Pz()’_l) B I:>a’[m

It isinteresting to note that the total impulse does not depend on the size of the opening, A-.
At moderate to high presaures the impulse in eq. (44) is approximately proportional to

(P2- Puans). Inaddition, if we negled air drag the gpogeeheight of a gas-only rocket is
proportional to impulse squared. This means that to double the gpogeeheight requires that
you at least quadruple the presaure, for a gas-only rocket.

C-D vs. C Nozzles

For agiven tank presaure there is an optimal arearatio, Ao/A-, for the CD nozze which will
maximizethrust. Unfortunately, for water rockets the tank presaure is not constant. A CD
nozze will not perform optimally away from its 'design condition’, and can even perform
substantially worse than a C nozzle. Thus, in optimizing the aearatio for aCD nozZeit is
important to look at the total impulse generated over the curse of tank blowdown. Fig. 5
gives the performance of CD nozZes, relative to corresponding C nozzes, at various area
ratios and initial air presaures. Noticethat the thrust improvement possble by using a CD
nozze is not substantial until very high tank presaures are used.
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Fig. 5 Impulse efficiency of air tank blowdown through C-D nozzes.

Solution for Rocket Motion

Because of the asumption that the nozZe is quasi-stealy state, the Fin: term can be negleaed
during gas-impulse. Thisleaves us with the following equation for rocket accéeration:

FotF
a= thr drag g (45)

mtot

The massof gas will be negligible for typicd rocket presaures, neverthelessit is not much
trouble to include it in the expresgon for total mass m,=m,+p,V,. Notethat p, can be
cdculated in time by a combination of egs. (36) and (39).

Because of the simplifying assumptions we have made for the gas flow, the rocket motion
problem is reduced to integrating egs. (10) with the aldition of the auxiliary egs. (39)-(43)
and eg. (45) above. Or, for an even simpler solution, one can tred the gas-impulse & an
instantaneous event which increases the rocket's velocity by an amount |c/my,, with Ic given by

eq. (44).

Document written using StarOffice 5.2 (freaware from sun.com) and converted to pd format using ghatscript (also free).
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Appendix A. Effect of Friction

Thus far in this document the dfea of friction on the internal fluid flow was negleded. Here
| give my concept for how to include the dfed of friction in the cdculations.

Boundary layer theory

The source of energy-robhing friction inside the rocket is due to the fluid having viscosity and
interading with the walls. Because of a andition known as 'no dip' the fluid exadly at the
wall of the bottle must have avelocity u of zero. Away from the wall, however, the fluid
velocity increases in magnitude until it attains a maximum value aound the cantral axis of the
bottle. The volume of the bottle is thus divided into two regions: the boundary layer region
of dow moving fluid next to the wall and the core region with full stream velocity. Think of it
like the lanes of traffic on afreavay: the boundary layer isthe dow lane, and the wreisthe
fast lane.

In the rocket sitting on the launch pad there is no boundary layer: all the fluid has one
velocity, namely zero. Following launch the fluid begins acceerating out of the bottle. At
first the no-dlip condition at the walls dows down only the fluid extremely close to the walls.
Astime alvances, the boundary layer grows or diffuses from the walls into the wreregion. If
the flow out of the bottle continued indefinitely at a cmnstant rate (like the nozzle on a garden
hose), the boundary layer would eventually stabilize. It is normally in this regime—steady or
fully-developed flow—that the friction fadors often given in the fluid medhanics textbooks

apply.

For the water-impulse phase the distance the boundary layer extends from the nozzle wall into

the flow will vary with time and will be gproximately equal to V0.2 vt, where v isthe

kinematic viscosity (shea viscosity divided by density). For water at room temperature
v=9.5x10""m?/s. This meansthat in the typicad water-impulse time of 0.05 seconds the

boundary layer will have only readied 0.1 mm into the flow. For standard soda-bottles the
losses due to a boundary layer will be negligible. On the other hand, for very narrow or long
nozzes the boundary layer can noticealy impede the flow through the nozze.

For gas flow in the nozZe region the boundary layer can more quickly reat a quasi-stealy
state in which boundary-layer thicknesswill mostly depend on distance z along the nozZze. In
general the boundary layer will have amore significant effea on the gas flow because v for
gasesisat least 10times aslarge & for water.

Modeling the boundary layer

The presence of the boundary layer has two effeds: (1) it obstructs flow because the
boundary-layer fluid moves dower than the wre fluid, and (2) it produces friction between the
boundary layer and the core fluid for the same reason. In both casesthe dfed can ke
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approximated by assuming all the fluid has a uniform core velocity but must flow through a
reduced effective cross-sectional area.

A relatively smple way to make the approximation is to use the von Karman-Pohlhausen
method. | will not explain the method--it is described in nearly all basic fluid mechanics
textbooks--except to give my results by applying it to the problem of transient flow through a
variable diameter tube.

[section not yet finished]
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Appendix B. Effect of Water Condensation

In amost every case there will be water vapor contained in the gas in the rocket. Rocketeers
frequently observe the formation of fog in the rocket, which is due to the condensation of that
water vapor as the gas temperature drops due to adiabatic expansion. Some have wondered if
the energy released in this condensation gives a sizeable kick to rocket thrust.

How much water vapor?

The biggest unknown in analyzing the situation is the mole fraction or volume fraction of
water vapor in the gas at liftoff, given by the variable x,. The initial partial pressure of water
vapor inthe gasis x,Po. Recall that Py is the absolute pressure inside the rocket just prior to
liftoff. If the vapor water were in equilibrium with any liquid water present in the rocket then

Xo I:)0: Pvap<T0> (B'l)

Ordinarily the initial temperature in the rocket (To) will be the same as the ambient or
atmospheric temperature (Tam). Puap iS the equilibrium vapor pressure of water. A reasonably
accurate correlation in this temperature regime is.

5310) (B-2)

P T ):exp(25.87 -

where Py isin units Paand T isin K.
| believe xoP, is approximately equal to P, as givenin eg. (B-1), under most conditions.

It may be possible for xPo in the rocket to exceed P , @t least temporarily, if ahand pump is
used to compress the atmosphere, resulting in supersaturated water vapor in the rocket. If the
atmosphere contains some value of relative humidity, 0<r,,,<1, the gasin the rocket could
have a mole fraction of water vapor as high as:

I:)vap ( T atm>

Xo= I hum P (B'?’)

atm

Snow vs. fog

Immediately following liftoff the pressurized gas in the bottle begins expanding and cooling
adiabatically. The adiabatic relation between bottle pressure and gas temperature is
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P [T\,
PT(T—O) 4

Infad, if the initial temperature T, is 298 K (25 °C) the egquation above predicts that the gas
temperature will drop well below the freeang point of water for essentially all pressurized
rockets. For thisreason, | believe it is more rred to think of microscopic ice aystals
forming in the rocket rather than liquid droplets. Following the boost phase, or after all the
pressure energy in the rocket has been expended, the gas in the rocket will warm badk upto
ambient temperature and these ice aystals will revert first to liquid droplets (normal fog) and
then eventually disappea to vapor. The anount of superheaing hereis relatively minor and
so the fog persists for alonger period of time.

When does the vapor condense?

If equili brium were continually enforced following liftoff, then vapor would condense little by
little & the gas cooled. However, there is an energy barrier to the formation of the new phase
and so equili brium can be significantly delayed. The vapor must be ‘undercooled' or
'supercooled' to lower the energy barrier so stable nuclei of the new phase can rapidly form.
This principle has been known for many yeas by operators of supersonic wind tunnels: in
their case the residencetime of the gasis  short that it takes a large degreeof supercooling
for water to condense in the wind tunnel. | believe that water rocketsfit this model because
the duration of thrust is also very short.

One observation by operators of wind tunnelsis that the water vapor condenses only when
thereis at least 50°C of supercoaoling. In my model | make an assumption similar to this: the
vapor condenses at predsely 12% supercoaling, that is when the @solute temperature is 12%
below the eguili brium temperature. This figure is based on my modeling eff orts combined
with observation of fog formation in rockets using high-speed video.This condition is
expresed as

XOPoond: Psub(Toond/O'88) (B-5)

where Peong and Teong @re the values at the point of condensation and are dso related
adiabaticdly by eg. (B-4). Sincewe ae now talking about ice formation, we must use the
vapor presaure of ice sublimation as our equili brium relation. A reasonably acarate function
for thisis

(B-6)

6165
T

P(T ):exp(28.99——

where, like &. (B-2), PspisinunitsPa and T in K. A quick solution to egs. (B-4) and (B-5)
is obtained by iterating on the value of T using
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(0.88)(6165)
28.99—In(x,Py)——Y=In (l) (B-7)

y—1 Ty

where again P, must be given in units Pa. We let Teona be the solution to T from eq. (B-7) and
Peona b€ the pressure from eqg. (B-4) at this point.

Given sufficient undercooling, the energy barrier will be broken. At this point the vapor
condenses catastrophically, that is all the water vapor condenses at once. Using this heuristic
means that the fog almost instantly forms in the bottle when the gas temperature meets the
condition of eg. (B-7). Rapid condensation such as this can be observed in the high-speed
videos | have made of rocket launches.

The release of heat
The amount of heat liberated by the condensation (per mole of gas mixture) is

Q=HgpX=C, AT (B-8)

where Hg, is the molar heat of sublimation for H,O (51.26 kJ/mol) and Cy is the constant-
volume heat capacity of the gas mixture. Since the mixture is almost completely made up of
the inert component, we can let C,=R/(y—1) where R isthe ideal gas constant. Not
coincidentally, the value 6165 in eq. (B-6) is equal to Hsw/R, with implied units of K.

With the above substitutions and a rearrangement of eq. (B-8) we get an expression for the
temperature of the gas the moment following condensation

T T ong 6165 (y—1)%, (B-9)

new

Furthermore, the newly increased pressure is given by

cond

PP~ |1 %)
e~ Poora | T (1=x,) (B-10)

The density of the gas remains constant since there has been no change in mass or volume.
The gasis how a heterogeneous mixture, however, and contains a small amount of entrained
crystals or droplets.

Results

Using my assumptions and model, let us run some example calculations. Let arocket be
pressurized at room-temperature to 8 bar absolute. Assume the water vapor inside the rocket
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isin equili brium with any liquid present. The partial presaure of water in the presaurized gas
mix will then be xP, = 0.0317 bar. The mndensation will occur at an estimated gas
temperature of -21 °C and absolute gas presaure of 4.45 bar. The temperature and presaure &
that moment are boosted to respedively -11 °C and 4.62 bar.

The end result isthat the gas presaure and temperature eab will be increased by severa
percent at the time of vapor condensation. Because the andensation typicdly occurs pretty
late during the gas-impulse phase, it doesn't increase overal thrust more than afew percent
becaise most of the gas has aready escgped the rocket and there is not much energy left.
Still, it is not much trouble to include the condensation effed in amodel. It will provide a
small but noticedle kick to the rocket's accéeration.
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Appendix C. Finite-Difference Integration

A smple way to get a numericd solution for a set of first-order ordinary differential equations
isto use an 'explicit’ or 'badkward-difference scheme. For our example we will solve aset of
two coupled equations:

dw
E— f (W, X)
dx
E—Q(W,X)

Notice how the dhangesin wand x (i.e. the time derivatives) eat depend on both variables.
Thisiswhat is meant by coupled equations.
Now perform the following steps:
(1) Discritizetime into small segments, ead of size At (cdled the timestep).
(2) Represent ead time segment with an integer index k multiplied by the timestep:
t,=kAt
The values of wand x at time tx are given by wi and x, respedively.
(3) Let theinitial known values of w and x be w, and X,, respedively.
(4) Now march through time, updating w and x at ead successvetimeindex (k =1, 2, 3, ...)
by
W=w, ,+AtT(w % ;)
X=X, +Atg(w 1, % ,)
Notice how wand x are given new values at ead time based on their valuesin the
immediately previous time step. Thisiswhy this s£heme is cdled badkward dff erencing.

This sheme is easy to implement. For instance, one can creae aspreadshed where eab row
corresponds to atime segment and has cdls for the w and x values which depend (through the
above auations) on the arresponding cdls for the previous time segment (the row above the
given row). Unfortunately, badkward dfferencing can have stability problems (i.e. produce
inacaurate or erratic results) if At istoolarge and/or if the equations are 'tiff." There ae
better, more stable schemes such as 'predictor-corredor' and Runge-Kutta, however they are a
little more difficult to program.
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Appendix D. Computational Examples

[section not yet finished]



