Investigation of time relativity with respect to Tsiolkovski formula

Tsiolkovski Formula

$$
v_{2}-v_{1}=v_{p} \cdot \log _{e} \frac{m_{1}}{m_{2}} \quad \Delta v=v_{p} \cdot L N \cdot \frac{m_{1}}{m_{2}}
$$

$\frac{m_{1}}{m_{2}}=e^{\frac{\Delta v}{v_{p}}}>m_{p}=m_{1}-m_{2}>m_{p}=m_{1}-m_{1} \cdot e^{-\frac{\Delta v}{v_{p}}}$
$m_{p}=m_{1} \cdot\left[1-e^{-\frac{\Delta v}{v_{p}}}\right]$
$\frac{m_{1}}{m_{2}}=e^{\frac{\Delta v}{v_{p}}}$

Why is this rate of change of mass ratio so important
What is the corelation with $\frac{\Delta v_{r}}{v_{p}}$
Using an external reference point of an observer on the surface
As the Intertial time reference.
$\frac{\Delta v}{v_{p}}=\frac{v_{r 2}-v_{r 1}}{v_{p}}=\left[\frac{\frac{L}{T_{\text {Local }}}}{\frac{L}{T_{\text {Earth }}}}\right]=\left[\frac{L}{T_{\text {Local }}}\right]\left[\frac{T_{\text {Earth }}}{L}\right]=\left[\frac{T_{\text {Earth }}}{T_{\text {Local }}}\right]$
$\frac{\Delta v}{v_{p}}=\frac{v_{r 2}-v_{r 1}}{v_{p}}=\left[\frac{\frac{L}{T_{\text {Local }}}}{\frac{L}{T_{\text {Earth }}}}\right]=\left[\frac{L}{T_{\text {Local }}}\right]\left[\frac{T_{\text {Earth }}}{L}\right]=\left[\frac{T_{\text {Earth }}}{T_{\text {Local }}}\right]$
Then what if at a certain point the time locally at the rocket $\left[T_{\text {Local }}\right]$ slowed relative to the reference time on Earth $\left[T_{\text {Earth }}\right]$.

At the Tsiolkovski Point where a specific mass flowrate and rocket velocity creates an energy condition where
$\left[T_{\text {Local }}\right]=\left[T_{\text {Earth }}\right]$ and therefore the value of $e^{\frac{T_{\text {Earth }}}{T_{\text {Locall }}}}=2.7182$.
After this point the value of $e^{\frac{T_{\text {Earth }}}{T_{\text {Local }}}}$ will increase as $\left[T_{\text {Local }}\right]$ slows and the relative value of $\frac{\Delta v_{r}}{v_{p}}$ increases.

That is a condition exists where the value of $\frac{\Delta v_{r}}{v_{p}}=\left[\frac{T_{\text {Earth }}}{T_{\text {Local }}}\right] \geq 1$

If a similar dimensional analysis of specific impulse is undertaken then an expression for Impulse Specific Impulse $\boldsymbol{I}_{s p}$ in seconds

$$
\begin{aligned}
& I_{s p}=\frac{F_{t h}}{\dot{m}_{p} \cdot g} \mathrm{secs} \\
& \text { Becomes }\left[\frac{\frac{M}{1} \cdot \frac{L}{T_{\text {Local }}^{2}}}{\frac{M}{T_{\text {Earth }}} \cdot \frac{L}{T_{\text {Earth }}^{2}}}\right]=\left[\frac{M}{1}\right]\left[\frac{L}{T_{L}^{2}}\right]\left[\frac{T_{E}}{M}\right]\left[\frac{T_{E}^{2}}{L}\right]=\left[\frac{T_{E}^{2}}{T_{L}^{2}}\right]\left[\frac{T_{E}}{1}\right]
\end{aligned}
$$

Then a reduction in $\left[T_{\text {Local }}\right.$] would also alter $I_{s p}$

For this condition to exist the rate of change of mass of the projectile has to create its own space time horizon.

