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1

Fluid field equations and modal analysis
in rigid containers

1.1 Introduction

The theory of liquid sloshing dynamics in partially filled containers is based on developing the

fluid field equations, estimating the fluid free-surface motion, and the resulting hydrodynamic

forces and moments. Explicit solutions are possible only for a few special cases such as upright

cylindrical and rectangular containers. The boundary value problem is usually solved for modal

analysis and for the dynamic response characteristics to external excitations. The modal analysis

of a liquid free-surfacemotion in a partially filled container estimates the natural frequencies and

the corresponding mode shapes. The knowledge of the natural frequencies is essential in the

design process of liquid tanks and in implementing active control systems in space vehicles. The

natural frequencies of the free liquid surface appear in the combined boundary condition

(kinematic and dynamic) rather than in the fluid continuity (Laplace’s) equation.

For an open surface, which does not completely enclose the field, the boundary conditions

usually specify the value of the field at every point on the boundary surface or the normal

gradient to the container surface, or both. The boundary conditions may be classified into

three classes (Morse and Fesbach, 1953):

(1) the Dirichlet boundary conditions, which fix the value of the field on the surface;

(2) the Neumann boundary conditions, which fix the value of the normal gradient on the surface; and

(3) the Cauchy conditions, which fix both value of the field and normal gradient on the surface.

Each class is appropriate for different types of equations and different boundary surfaces. For

example, Dirichlet conditions on a closed surface uniquely specify a solution of Laplace’s

equation inside the closed surface.

The variational formulation based on Hamilton’s principle is regarded as the most powerful

tool for developing the fluid field equations. This approach has been proposed and used by

Lawrence, et al. (1958), Troesch (1960), Bogoryad (1962), Borisova (1962), Petrov (1962a,b,c),

Moiseev (1964), Moiseev and Petrov (1966), Luke (1967), Whitham (1967), Lukovskii (1967,

1976), Moiseev and Rumyantsev (1968), Limarchenko (1978a, 1980, 1983b), Lukovskii and

Timokha (1992, 1995), and Rocca, et al. (1997). The method of integral equations was adopted

for containers whose wetted walls are not straight vertical but curved such as spherical

containers and horizontal cylindrical containers (see, e.g., Budiansky, 1960 and McIver,

1989). Some analytical and approximate approaches to estimating the sloshing frequencies

were developed by Housner (1963a), Evans (1990), and Evans and Linton (1993).

Henrici, et al. (1970) presented an extensive treatment of liquid sloshing in a half-space

bounded above by a rigid plane that contains either a circular or infinite-strip aperture. They
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obtained both upper and lower bounds of the natural frequencies. Troesch and Troesch (1972)

and Miles (1972) discussed some features of the spectrum of the eigenvalues of liquid sloshing

in a half-space with an emphasis on their upper bounds. Banning, et al. (1966) built an

apparatus for demonstrating the dynamics of liquid sloshing.

The dynamic behavior of liquid propellant free surface was addressed by Ehrlich (1959),

Abramson (1961b, 1965), Eulitz and Glaser (1961), Eulitz (1963), Bonneau (1964), Buchanan

and Bugg (1966), Fontenot (1968), Martin (1971), and Dodge and Garza (1971). The modal

analysis in a circular cylindrical container was originally treated by Poisson (1828) but the

results were not interpreted because the theory of Bessel’s function was not sufficiently

developed at that time. The equations of motion of a liquid in rigid rectangular and rigid

circular tanks of uniform depth and with linearized boundary conditions were also given by

Rayleigh (1887), Steklov (1902), and Lamb (1945). The solution of the Laplace equation using

the method of separation of variables is somewhat less powerful for cases where the liquid

depth is variable and other methods, such as the Ritz method, should be used. Bratu (1971)

studied the oscillations of liquid masses in reservoirs.

The free-surface mode shapes for containers with axial symmetry were determined by

Borisova (1962), Bonneau (1964), Moiseev and Petrov (1965, 1966), Pfeiffer (1967a,b),

Einfeldt, et al. (1969), McNeil and Lamb (1970), Henrici, et al. (1970), Pshenichnov (1972),

and Boyarshina and Koval’chuk (1986) determined the normal modes and natural frequencies

of the free surface in an inclined cylinder. Trotsenko (1967) studied the liquid oscillations in a

cylindrical tank with annular baffle. For a spherical tank, the problem is analytically more

complex and approximate solutions for the natural frequencies were obtained by Bauer

(1958a), Budiansky (1960), Leonard and Walton (1961), Riley and Trembath (1961),

Lukovskii (1961a,b), Chu (1964a), Boudet (1968), McIver (1989), El-Rahib and Wagner

(1981), and Bauer and Eidel (1989b). The natural frequency of horizontal circular canals

and spherical containers is determined from an integral equation, which is usually discretized

into a matrix form for numerical calculations (Barnyak, 1997).

Bauer (1964b) andMooney, et al. (1964a,b) analyzed the free-surface oscillations in a quarter

tank and in a tank with annular sector cross-section. In both cases, the natural frequency of the

free surface was found to have the same expression as the circular cylindrical tank but with

different roots of the Bessel function. The liquid sloshing frequencies for different container

geometries were evaluated by Miles (1964, 1972), Kuttler and Sigillito (1969), Fox and Kuttler

(1981, 1983), Meserole and Fortini (1987), and McIver and McIver (1993). The influence of

movable devices and internal pipes on the natural frequencies of the free surface was deter-

mined by Siekmann and Chang (1971b) and Drake (1999). Bauer and Eidel (1999c) considered

different configurations of cylindrical containers.

Based on the two-dimensional analysis of liquid motion in rectangular tanks, the natural

frequency depends essentially on the liquid depth to width ratio. The effect of liquid depth

is diminished as the mode order increases. Graham and Rodriguez (1952) solved the three-

dimensional velocity potential for which the natural frequency depends on the three major

dimensions of the fluid. Ghali (1965) determined the nonlinear dependence of the natural

frequencies on the wave motion amplitude. The influence of damping on the natural frequency

was studied experimentally by Ghali (1965), Scarsi and Brizzolara (1970), Scarsi (1971), and

Schilling and Siekmann (1980). It was found that for higher viscosities (of kinematic viscosity

�¼ 2.5 poise) the resonance frequency is slightly higher than the predicted value for an ideal liquid.

4 Modal analysis in rigid containers
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The purpose of this chapter is to develop the fluid field equations with reference to an inertial

frame and with respect to a moving coordinate system. The variational approach is demon-

strated as a tool to derive the boundary-value problem in one treatment. The modal analysis of

liquid free-surface motion is formulated for different tank shapes. The analysis includes the

estimation of the velocity potential function, fluid free-surface natural frequencies and mode

shapes. The influence of surface tension is included in some cases. However, its effect is

dominant in a microgravity field as will be demonstrated in Chapter 12. Note that analytical

solutions in a closed form are only obtained for regular tank shapes whose walls are upright

straight. For other tank geometries with variable depth, one can determine the natural

frequencies and mode shapes either experimentally or numerically.

1.2 Fluid field equations

The analytical description of the fluid field equations is documented for different cases of tank

geometries by Ewart (1956), Bauer (1962a, 1966c, 1969a), Lomen (1965a), Abramson (1966a),

Ibrahim (1969), Khandelwal (1980), Kornecki (1983), and Bauer (1999). The general equations

of motion for a fluid in closed containers can be simplified by assuming the container rigid and

impermeable. Furthermore, the fluid is assumed inviscid, incompressible, and initially irrota-

tional. Capillary or surface tension effects will be ignored in a gravitational field. However, the

effect of surface tension will be introduced for some simple cases. The free-surface oscillations

can be generated by giving an initial impulse, or an initial disturbance to the free surface.

This section considers the general case of a tank moving along some trajectory in space.

The formulation is applicable to free and forcing liquid free-surface oscillations. It is con-

venient to refer the fluid motion to a moving coordinate system as the variables are measured

relative to the moving frame. It is also useful to write the fluid equations of motion with

reference to stationary and moving coordinates as shown in Figure 1.1. In the present analysis,

the tank is allowed to move in planar curvilinear motion without rotation. LetO0X0Y0Z0 be the
stationary Cartesian coordinate frame. The Euler equations of motion of the fluid are written

in the vector form

z

x

y

r
ro

Z ′

X ′
Y ′

O ′

rp

O
p

Figure 1.1 Moving liquid container showing inertia and moving coordinates.

1.2 Fluid field equations 5
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@

@t
qþ q � �ð Þq ¼ � 1

�
�P� �ðgZ 0Þ (1:1)

where q is the fluid velocity, @q=@t is the local acceleration of the flow at the point whose

coordinates are not allowed to vary (this acceleration is measured by a fixed observer), q � �ð Þq
is the convective acceleration for a fluid particle drifting with the stream at a velocity q in the

flow direction (this acceleration is measured by an observer moving with the particle p),P is the

fluid pressure, � is the fluid density, gZ
0
is the gravitational potential, and � is an operator

given for different coordinate frames in the appendix to this chapter. Note that the convective

acceleration q � �ð Þq may also be written in the form (Thomson, 1965, p. 44)

q � �ð Þq ¼ 1

2
� q2 � q� �� qð Þ ¼ 1

2
� q2 (1:2)

For irrotational flow the curl of the velocity vanishes, that is, �� q ¼ 0.

For irrotational fluid motion, there exists a velocity potential function, F, whose (negative)
gradient gives the fluid velocity,

q ¼ ��� (1:3)

The negative sign is optional and in some cases it may be removed provided the analysis

preserves the sign convention. Introducing relations (1.2) and (1.3) into equation (1.1) gives

�
P

�
þ 1

2
q2 þ gZ0 � @�

@t

� �
¼ 0 (1:4)

Upon integrating equation (1.4) one obtains

P

�
þ 1

2
q2 þ gZ0 � @�

@t
¼ CðtÞ (1:5)

where C(t) is an arbitrary function of time.

Equation (1.5) is the general form of Kelvin’s equation for an unsteady fluid flow. In this

equation the potential functionF is a function of space and time, and its derivative with respect

to time measures the unsteadiness of the flow. However, @F=@t is interpreted as the work done

on a unit mass of the fluid whose coordinates are (X,Y,Z ). Furthermore, equation (1.5) is only

valid for incompressible flow for which the continuity condition � � q ¼ 0 yields Laplace’s

equation, which after introducing equation (1.2) takes the form

�2� ¼ 0 (1:6)

Let Oxyz be another coordinate frame fixed to the tank such that the Oxy plane coincides

with the undisturbed free surface. Let V0 be the velocity of the origin O relative to the fixed

originO0. In this case, the time rate of change of the velocity potential F at a point fixed in the

stationary frame O0X0Y0Z0 as measured by an observer in the moving frame Oxyz is

ð@=@t� V0 � �Þ�, since this point will appear to have a velocity �V0 with respect to the

observer. Accordingly, the pressure equation (1.5) takes the form

P

�
þ 1

2
q2 þ gZ0 � @�

@t
þ V0 � �� ¼ CðtÞ (1:7a)

6 Modal analysis in rigid containers
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The fluid particle velocity qrel relative to the moving coordinate is

qrel ¼ q� V0 ¼ ����V0 (1:8)

Expressing q in terms of qrel and V0, using relation (1.8), gives

P

�
þ 1

2
q2rel þ gZ0� @�

@t
� 1

2
V2

0 ¼ CðtÞ (1:7b)

Equation (1.7a) is written in terms of the total fluid velocity as measured by the fixed

coordinate and equation (1.7b) is given in terms of the fluid relative velocity to the tank

moving coordinates. At the free surface, the pressure is equivalent to the ambient pressure or

can be set to zero in equation (1.7a). This gives the dynamic boundary condition

1

2
ð�� � ��Þ þ g� � @�

@t
þ V0 � �� ¼ 0 (1:9)

where the function C(t) has been absorbed in the potential function, F.
The vertical velocity of a fluid particle located on the free surface z¼ � (r, �, t)¼ � (x, y, t)

should be equated to the vertical velocity of the free surface itself. This condition is known as

the kinematic free-surface condition and is given by the following expression

� @�

@z
¼ @�

@t
þ qrel � �� (1:10)

At the wetted rigid wall and bottom, the velocity component normal to the boundary must

have the same value of the corresponding velocity component of the solid boundary at the

point in question. For example, if the tank is allowed to move in the vertical plane then the

velocity vector in terms of Cartesian and cylindrical coordinates may be written in the form,

respectively

V0 ¼ _X0iþ _Z0k (1:11a)

V0 ¼ _X0 cos �
� �

ir � _X0 sin �
� �

i� þ _Z0iz (1:11b)

The boundary conditions at the wall and bottom for Cartesian and cylindrical coordinates

are, respectively,

�@�

@z

����
z¼�h

¼ _Z0; �@�
@x

����
x¼a

¼ _X0 (1:12a)

�@�

@z

����
z¼�h

¼ _Z0; �@�
@r

����
r¼R

¼ _X0 cos � (1:12b)

It is possible to split the total velocity potential function, F, into a disturbance potential

function, ~�, and a potential function, Fo, which defines the motion of the tank, that is,

� ¼ ~�þ �o (1:13)

1.2 Fluid field equations 7
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The function Fo can be determined by integrating equation (1.11) as

�o ¼ � _X0r cos �� _Z0z� 1

2

Z
ð _X2

0 þ _Z2
0Þ dt (1:14)

Introducing (1.13) and (1.14) into the free-surface boundary conditions gives

1

2
� ~� � � ~�
� �þ ðgþ €Z0Þ� � @ ~�

@t
þ €X0r cos � ¼ 0 (1:15)

�@ ~�

@z
¼ @�

@t
� @�

@r

@ ~�

@r
� 1

r2
@�

@�

@ ~�

@�
(1:16)

The corresponding conditions for a rectangular tank are

1

2
� ~� � � ~�
� �þ ðgþ €Z0Þ� � @ ~�

@t
þ €X0x ¼ 0 (1:17)

�@ ~�

@z
¼ @�

@t
� @�

@x

@ ~�

@x
� @�

@y

@ ~�

@y
(1:18)

One may introduce the effect of surface tension, �, by including the pressure change across

the displaced free liquid surface as described by the Laplace–Young equation

ps ¼ �
1

R1
þ 1

R2

� �
(1:19)

whereR1 and R2 are the principal radii of curvature. The complete formulation of the boundary

value problem in terms of the disturbance potential function is summarized as follows:

(1) for a cylindrical container:

�2 ~� ¼ 0 (1:20a)

@ ~�

@r

����
r¼R

¼ 0;
@ ~�

@z

����
z¼�h

¼ 0 (1:20b, c)

1

2
� ~� � � ~�
� �þ ðgþ €Z0Þ� � @ ~�

@t
þ �

�

1

R1
þ 1

R2

� �
þ €X0r cos � ¼ 0; at z ¼ �ðr; �; tÞ (1:20d)

� @ ~�

@z
¼ @�

@t
� @�

@r

@ ~�

@r
� 1

r2
@�

@�

@ ~�

@�
; at z ¼ �ðr; �; tÞ (1:20e)

The curvature � for cylindrical coordinates is given by the expression

� ¼ � 1

R1
þ 1

R2

� �

¼ � �rr 1þ ð�2�=r2Þ
� �þ ð1þ �2r Þ ð�r=rÞ þ ð���=r2Þ

� �� 2 �r ð��=r2Þ �rr þ ð��=rÞð Þ
1þ �2r þ ð�2�=r2Þ
� �3=2

(1:21)

8 Modal analysis in rigid containers
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This expression can be linearized in the form

� ¼ � �rr þ �r
r
þ ���

r2

h i
(1:22)

(2) for a rectangular container:

�2 ~� ¼ 0 (1:23a)

@ ~�

@x

����
x¼�a=2

¼ 0;
@ ~�

@y

����
x¼�b=2

¼ 0;
@ ~�

@z

����
z¼�h

¼ 0 (1:23b, c, d)

1

2
� ~� � � ~�
� �þ ðgþ €Z0Þ� � @ ~�

@t
þ �

�

1

R1
þ 1

R2

� �
þ €X0x ¼ 0; at z ¼ �ðx; y; tÞ (1:23e)

� @ ~�

@z
¼ @�

@t
� @�

@x

@ ~�

@x
� @�

@y

@ ~�

@y
; at z ¼ �ðx; y; tÞ (1:23f)

The curvature, �, for cylindrical coordinates is given by the expression

� ¼ � 1

R1
þ 1

R2

� �
¼ �

�xx 1þ �2y

� 	
þ �yyð1þ �2xÞ � 2�x�y�xy

1þ �2x þ �2y

h i3=2 : (1:24)

This expression can be linearized in the form

� ¼ � �xx þ �yy
� �

(1:25)

For other container geometries, such as spherical, prolate and oblate spherical, and elliptic

containers, the continuity equation and other related operators are listed in the appendix to

this chapters. Note that the velocity potential function, ~�, must satisfy Laplace’s equation,

�2 ~� ¼ 0, which is a linear partial differential equation. The nonlinearity in the boundary value

problem only exists in the free-surface boundary conditions on z¼ �. If one is interested in the

modal analysis then one should drop the nonlinear and nonconservative terms from the free-

surface boundary conditions. If the potential function is obtained analytically in a closed form,

then the natural frequencies of the fluid free surface are obtained by using the dynamic free-

surface condition based on the fact that ~� is harmonic in time. Another powerful approach is

to use the variational formulation together with the Rayleigh–Ritz method. The next section

describes an alternative approach based on the variational principle.

1.3 Variational formulation

The variational approach is based on establishing the superlative of a certain function that

describes the system behavior. The Lagrangian, L¼T�V, has to be minimized (or maxi-

mized), where T and V are the kinetic and potential energies of the system, respectively. The

variational principle, or Hamilton’s principle, is

�I ¼ �

Zt2
t1

ðT� V Þ dt ¼ 0 (1:26)

1.3 Variational formulation 9
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Basically Hamilton’s principle states that the actual path in the configuration space yields

the value of the definite integral stationary with respect to all arbitrary variations of the path

between two instants of time t1 and t2 provided the path variations vanish at these two end

points. For any actual motion of the system, the system will move so that the time average of

the difference between the kinetic and potential energies will be a minimum. This formulation

is very powerful since it brings in one statement the fluid field equations and the associated

boundary conditions. Substituting for the kinetic energy, T ¼ R
	

ð�=2Þ ��j j2 d	, and potential

energy, V ¼ R
S

ð�=2Þð�g� dSÞ, where 	 is the fluid volume, and S is the fluid free surface, in

equation (1.26), and taking the variation gives

�I ¼ �

Zt2
t1

dt

Z
	

�

2
��j j2 d	�

Z
S

�

2
ð�g� dSÞ

8<
:

9=
;

¼ �

Zt2
t1

dt

Z
	

����� d	� g

Z
S

��� dS

8<
:

9=
; ¼ 0 ð1:27Þ

The volume integral can be transformed into a surface integral using Green’s formula,R
	

����� d	 ¼ R
S

� @��
@n dS. Furthermore, one may use the relationship

�� ¼ n
@�

@n
¼ � n

@�

@t

(see, e.g., Thomson, 1965), where n is the unit vector along the normal at the point in question

to the equi-potential surface of F. In this case, the variational takes the form

�

Zt2
t1

dt

Z
S

�
@��

@n
� g���


 �
dS

8<
: ¼ ��

Zt2
t1

dt

Z
S

��
@�

@t
þ g���


 �
dS

8<
: ¼ 0

Integrating by parts gives

�

Zt2
t1

Z
S

� @�

@t
þ g�


 �
�� dS dt ¼ 0

This statement yields the linearized dynamic free surface condition

� @�

@t
þ g� ¼ 0 (1:28)

Moiseev and Rumyantsev (1968) introduced the Neumann operator H, which makes the

velocity potential, F, harmonic inside the fluid volume domain, 	. The harmonic property is

based on the fact that the integral of free-surface velocity, _�ðsÞ, vanishes over the free surface,
that is,

R
S

_�ðsÞ ds ¼ 0. The function F satisfies the following conditions on the fluid boundary

@�
@n ¼ 0 at the container walls, and @�

@n ¼ � _� at the free surface.

10 Modal analysis in rigid containers
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In this case, one can write the correspondence as � ¼ H _�, where H is the integral operator

H _� ¼
Z
S

Hðs; 	Þ _�ðsÞ ds ¼ �ð	Þ (1:29)

Note that the kernel is the Green function of Neumann’s problem for the region 	. This

kernel is known to be symmetric (see, e.g., Mikhlin, 1964, and Gunter, 1965). The kernel is

logarithmic in the case of the plane problem, that is, when the volume is reduced to a plane

surface. The kernel is a polar function in the case of the three-dimensional problem. Thus,H is

a fully continuous selfadjoint operator, and one can write the following representation

�ð	Þ ¼ H
@�

@z
¼ �H

@�

@t
(1:30)

Taking the time derivative for both sides and using equation (1.28), gives

g� þH
@2�

@t2
¼ 0 (1:31)

The average energy function can be written in terms of the Neumann operator in the form

I1 ¼ �

2

Zt2
t1

Z
S

H
@�

@t

� �2
� g�2

( )
ds dt (1:32)

Alternatively, one can write the average energy function in terms of the scalar potential

function in the form, after using equation (1.28)

I ¼
Zt2
t1

dt

Z
	

�

2
��j j2 d	� 1

g

Z
S

�2 ds

8<
:

9=
; (1:33)

Equations (1.32) and (1.33) can be used for estimating the natural frequencies for the liquid

free surface. At the free surface, S, both the velocity potential function and the free-surface

wave height can be expressed in terms of time and space as follows

�ðs; tÞ ¼ FðsÞ cos!t; and �ðs; tÞ ¼ GðsÞ sin!t (1:34)

where ! is the free-surface natural frequency. Substituting equations (1.34) in the average

energy functions given by equations (1.32) and (1.33) and integrating over time t from t1¼ 0 to

t2¼ 2p/!, gives

I1 ¼ 


Z
S

HG � Gds�
Z
S

G2 ds (1:35)

I2 ¼
Z
	

�

2
�Fj j2 d	� 


Z
S

F2 ds (1:36)

where 
¼!2/g. The natural frequencies of the fluid free surface are determined by using the

Rayleigh–Ritz method. The method is based on introducing a linear combination of a

1.3 Variational formulation 11
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