Derivation of Tsiolkovsli's Rocket Formula.

Imagine a rocket of mass ' M ' and velocity ' u ' relative to a stationary observer. Then let ' v ' be the exhaust velocity of the rocket jet as it leaves the nozzle.
Now if a small amount of fuel burns in the combustion chamber of the rocket motor. It produces a high energy gas stream which expands and leaves the the rocket nozzle to enter the atmosphere. We can say that the rocket mass has been effectively reduced by a small amount $d M$ whilst the exhaust jet has been increased by the same amount $d M$.

We can then create an expression for the momentum of the rocket and the exhaust jet after a small increment in time $d t$:

$$
\begin{align*}
& \Delta_{\text {Rocket }}=(M-d M) d u \tag{1}\\
& \Delta_{\text {Exhaust }}=d M(u+v) \tag{2}
\end{align*}
$$

Applying Newtons law for the 'Conservation of momentum' to equations 1 and 2 we have.

$$
\begin{equation*}
d M(u+v)+d u(M-d M)=0 \tag{3}
\end{equation*}
$$

Initially the gas stream jet velocity will be far greater than that of the rocket. Therefore
$u \lll \quad$ So we say $u=>0$ tends to zero or is insignificant relative to the size of velocity v and if the elemental mass of exhaust gas lost relative to that of the whole rocket very small. Then we can say
$M \ggg \gg$ or $d M=>0$.

Re writing equation 3 we get

$$
\begin{equation*}
d M . v+d u \cdot M \quad=0 \tag{4}
\end{equation*}
$$

Rearranging Eq4 for $d u$

$$
\begin{equation*}
d u=\frac{-v \cdot d M}{M} \tag{5}
\end{equation*}
$$

Integrating between definite limits from the Initial point 1 to point 2.after an elemental time $d t$ when $d u$ and $d M$ occur. We get

$$
\begin{aligned}
& \int_{U 1}^{U 2} 1 \cdot d u=-v \int_{M 1}^{M 2} \frac{d M^{\prime}}{M^{\prime}} \\
& {\left[\mathrm{u}_{1}-\mathrm{u}_{2}\right]=-v[\operatorname{Ln~M}}
\end{aligned}
$$

Multiply both sides of the equation by -1 and rearranging for \mathbf{U}_{2}
$\mathrm{u}_{2}=v \cdot \operatorname{Ln} \frac{M 1}{M 2}+\mathrm{u}_{1}$

