Derivation of Tsiolkovski’s Rocket Formula.

Imagine a rocket of mass ‘M’ and velocity ‘u’ relative to a stationary observer. Then let ‘v’ be the exhaust velocity of the rocket jet as it leaves the nozzle. Now if a small amount of fuel burns in the combustion chamber of the rocket motor. It produces a high energy gas stream which expands and leaves the the rocket nozzle to enter the atmosphere. We can say that the rocket mass has been effectively reduced by a small amount dM whilst the exhaust jet has been increased by the same amount dM.

We can then create an expression for the momentum of the rocket and the exhaust jet after a small increment in time dt:

$$\Delta_{\text{Rocket}} = (M - dM)du$$ \hspace{1cm} (1)

$$\Delta_{\text{Exhaust}} = dM(u + v)$$ \hspace{1cm} (2)

Applying Newton’s law for the ‘Conservation of momentum’ to equations 1 and 2 we have.

$$dM(u + v) + du(M - dM) = 0$$ \hspace{1cm} (3)

Initially the gas stream jet velocity will be far greater than that of the rocket. Therefore

$$u \ll v \quad \text{So we say } u \Rightarrow 0 \quad \text{tends to zero or is insignificant relative to the size of velocity } v$$

and if the elemental mass of exhaust gas lost relative to that of the whole rocket very small. Then we can say

$$M \gg dM \quad \text{or } dM \Rightarrow 0.$$ \hspace{1cm} (4)

Re writing equation 3 we get

$$dM.v + du.M = 0$$ \hspace{1cm} (4)

Rearranging Eq4 for du

$$du = -\frac{v.dM}{M}$$ \hspace{1cm} (5)

Integrating between definite limits from the Initial point 1 to point 2 after an elemental time dt when du and dM occur. We get

$$\int_{u_1}^{u_2} 1.du = -\frac{v}{M_1} \int_{m_1}^{m_2} dM'$$ \hspace{1cm} (6)

$$[u_1 - u_2] = -v [\ln M_1 - \ln M_2] = -v \cdot \ln \frac{M_1}{M_2}$$

Multiply both sides of the equation by –1 and rearranging for u_2

$$u_2 = v \cdot \ln \frac{M_1}{M_2} + u_1$$

The Water Rocket Explorer