The Tsiolkovski End function.

Derivation of Tsiolkovski's adapted for low mass high acceleration projectiles.

$$
\begin{equation*}
\Delta_{\text {Projectile }}=(M-d M) d u \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
\Delta_{\text {Exhaust }}=d M(u+v) \tag{2}
\end{equation*}
$$

Applying Newtons law for the conservation of momentum to Equations 1 and 2.

$$
\begin{equation*}
d M(u+v)+(M-d M) d u=0 \tag{3}
\end{equation*}
$$

In the normal derivation at the limit we use the convention

$$
\text { M.>> dM } \quad \mathrm{dM} \rightarrow 0
$$

And $\quad v \gg u$

$$
u \rightarrow 0
$$

For the case of light projectiles and water rockets the impulse phase can be split into two distinct phases.
Before the function $\operatorname{Ln} \frac{M 1}{M 2}=1$ or $\frac{M 1}{M 2}=\mathrm{e}^{1}$
Which I refer to as the Tsiolkovski point $\boldsymbol{t}_{\text {Tsiol }}$ and after.
At this limit $u_{2}=v+u_{1}$
So the limit case of $u \rightarrow 0$ is now inappropriate
$u_{2}=v \cdot \operatorname{Ln} \frac{M 1}{M 2}+u_{1}$

Beyond this point and for the remainder of the jet impulse Δ it
Another set of conditions need to be selected to both match and model the actual end function. The acceleration beyond the Tsiolkovski point.
$\Delta i t_{2} . \mathrm{e}^{\frac{m g 1}{m g 2}}=\Delta \mathrm{a}_{2} . \mathrm{g}$
$\mathrm{e}^{\frac{m g 1}{m g 2}}=\frac{\Delta a 2}{\Delta i t 2} \cdot \mathrm{~g}$

Using the relationship

$$
x=e^{y}
$$

Then

$$
y=\log _{e} x
$$

Modified mass ratio

$$
\frac{m g 1}{m g 2}=\operatorname{Ln} \frac{\Delta a 2}{\Delta i t 2} \cdot \mathrm{~g}
$$

Where
$\Delta i t_{2}$ is the impulse time left to complete the mass flow.
$\Delta \mathrm{a}_{2} \quad$ is the change in acceleration of the projectile between $t_{\text {Tisiol }}$ or $\left(t_{1}\right)$ and the completion of the impulse at t_{2}.
$m g 1$ is the mass at the Tsiolkovski point modified to take account of relativity.
$m g 2$ is the mass at the end of the jet impulse phase modified to take account of relativity.
$\mathrm{g} \quad$ is the standard reference gravitational acceleration at standard reference time relative to an external observer.

Hypothesis :

If time is related to a gravitation field and this graviton field is created by accelerating a mass. Then extreme acceleration of the mass would deform the time regime of that mass relative to an static observer.
Imagine a small mass of 200 gms accelerated to 135 g after time 0.05 sec
Then this mass is progressively reduced to 50 gms and accelerated to 450 g over a very short time interval $\mathrm{t}=0.01 \mathrm{sec}$.

Worked Example :

Using data measured at 500 images $/ \mathrm{sec}$ for a basic bluff Badoit bottle with fins.
(No nose-cone)
Conditions at the Tsiolkovski point :

M1 $=0.204 \mathrm{Kgs}$
$a_{1}=135.9 \mathrm{~g}$
$t_{\text {Tisiol }}$ or $\left(t_{1}\right)=0.0492 \mathrm{sec}$
$\mathrm{m} \cdot \frac{d}{d t}=12 . \mathrm{Kgms} / \mathrm{sec}$
$u_{1}=45 \mathrm{~m} / \mathrm{s}$
$\frac{m f}{t \text { Tsiol }} \geq 220 \quad 7$ and 8 bar

Conditions at the end of the jet impulse
M2 0.057 Kgs
$a_{2}=448.22 \mathrm{~g}$
$t_{2} .=0.0665 \mathrm{sec}$
Between points 1 and 2 .
$\Delta \mathrm{a}_{2}=a_{2}-a_{1}$
$\Delta \mathrm{a}_{2}=448.22 \mathrm{~g}-135.9 \mathrm{~g}$
$\Delta \mathrm{a}_{2}=312.32 \mathrm{~g}$
$\Delta i t_{2}=0.0173 \mathrm{sec}$
The assumption here is that above a threshold specific mass flowrate of $\frac{m f}{t T s i o l} \geq 220$
The accelerated mass has experiences a relativity related time reduction. Induced by the gravitational field generated by the accelerated mass. The extreme acceleration seen during the later part of the impulse can then be treated by effectively reducing the relative equivalent mass by the equivalence by which time is slowed due to the acceleration.
Imagine time effectively slowing down relative to a static observer, due to the mass being accelerated. So that both the mass and time have momentarily been effectively reduced, relative to a static observer. This change would be proportional to the acceleration of the mass.
$m g_{1}=\frac{\text { InitialMass }}{\text { DaTrelative }}$
$m g_{1}=\frac{0.2049}{135.9}=0.001507$
$m g_{1}=1.507 \cdot 10^{-3}$
$m g_{2}=\frac{\text { InitialMass }}{\text { DaTrelative }}$
$m g_{2}=\frac{0.057}{448.22}=0.000124$
$m g_{2}=1.24 \cdot 10^{-4}$
$\frac{m g 1}{m g 2}=\frac{1 \cdot 508 \cdot 10^{-3}}{1.249 \cdot 10^{-4}}=1.2068 \cdot 10^{1}$
$\mathrm{e}^{\frac{m_{g} 1}{m_{g} 2}}=\mathrm{e}^{12.068}$
$\mathrm{e}^{\frac{m_{g} 1}{m_{g} 2}}=174160.639$
Then
$\Delta t_{2} . \mathrm{e}^{\frac{m g 1}{m_{g} 2}}=0.0165 * 174160.64=3012.98$
$\Delta i t_{2} . \mathrm{e}^{\frac{m g 1}{m_{g} 2}}=3012.98$
$\Delta \mathrm{a}_{2}=312.32 \mathrm{~g}=3063.86$
Error 1.6\%
Allowing for experimental error then this model is possible.

Dimensional Analysis

$$
\Delta i t_{2} \cdot \mathrm{e}^{\frac{m g 1}{m g^{2}}}=\Delta \mathrm{a}_{2} \cdot \mathrm{~g}
$$

Assumptions :

$$
\begin{array}{ll}
\Delta i t_{2} \text { Term is the impulse of the remaining jet pulse. } & {\left[T_{\text {Earth }}\right]} \\
\Delta \mathbf{a}_{2} \text { Is the change in acceleration between } t_{\text {Tisil }} \text { or }\left(t_{1}\right) \text { and } t_{2} . & {\left[\frac{L}{T_{\text {Earth }}^{2}}\right]}
\end{array}
$$

$\mathrm{e}^{\frac{m g 1}{m g 2}}$ Is the rate of change of mass ratio relative to the local time.
If the local time changes relative to $t_{\text {Earrhg }}$ then this will change the local gravitational constant $g_{\text {local }}$.

Giving a dimensional parameter of the form

$$
\left[\frac{M_{\text {ratio }}}{T_{\text {local }}}\right]\left[\frac{L}{T_{\text {Earth }}^{2}}\right]
$$

$$
\Delta i t_{2} \cdot \mathrm{e}^{\frac{m g 1}{m g 2}}=\Delta \mathrm{a}_{2} \cdot \mathrm{~g}
$$

$$
\left[T_{\text {Earth }}\right]\left[\frac{M_{\text {ratio }}}{T_{\text {local }}}\right]\left[\frac{L}{T_{\text {Earth }}^{2}}\right]=\left[\frac{L}{T_{\text {Earth }}^{2}}\right]
$$

$$
M_{\text {ratio }}=1
$$

$\mathrm{e}^{\frac{m g 1}{m g 2}}$ Represents the gravitational change of a rapidly accelerated mass.
Note: At accelerations of the order of $150>450 \mathrm{~g}_{\text {Earth }}$

